6 resultados para GRAPHITE ELECTRODE SURFACE

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dipyrromethene-Cu(II) derivatives possessing two dodecane alkyl chains have been used for the modification of gold electrodes. Electroactive host molecules have been incorporated into a lipophilic dodecanethiol SAM deposited onto gold electrodes through hydrophobic and van der Waals interactions (embedment technique). The presence of dipyrromethene-Cu(II) redox centers on the electrode surface was proved by cyclic voltammetry and Osteryoung square-wave voltammetry. The Au electrodes incorporating redox active Cu(II)-dipyrromethene SAMs were used for the direct voltammetric determination of paracetamol in human plasma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of the procedures reported for the synthesis of metal nanoparticles involve the use of strong reducing agents or elevated temperatures. This limits the possibility of developing metal nanoparticle based sensors for the in situ detection of analytes. One of the objectives of the present investigations is to (i) develop newer methodologies for the synthesis of metal nanoparticles in aqueous medium at ambient conditions and (ii) their use in the detection of metal cations by taking advantage of the unique coordination ability. Ideally, biocompatible molecules which possess both the reducing and stabilizing groups are desirable for such applications. Formation of stable supramolecular assembly, by bringing metal nanoparticles close to each other, results in plasmon coupling and this strategy can be effectively utilized for the development of metal nanoparticle based sensors.Another objective of the present study is to understand the supramolecular organization of molecules on surfaces. Various noncovalent interactions between the molecules and with surface play a decisive role in their organizations. An in-depth understanding of these interactions is essential for device fabrications. Recent photophysical studies have revealed that phenyleneethynylene based molecular systems are ideal for device application. The second objective of the thesis focuses on understanding the (i) organization of phenyleneethynylenes on highly oriented pyrolytic graphite (HOPG) surface with atomic level precision and (ii) weak intermolecular interactions which drive their organization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of electrochemical sensors is currently one of the active areas of research in analytical chemistry.Voltammetric sensors as an important class of electrochemical sensors are extensively used in pharmaceutical applications.In voltammetric analysis,many active compounds in dosage forms,in contrast to excipients,can be readily oxidised or reduced at the electrode surface by applying a potential.Chemically modified electrodes have great significance in the electrochemical determination of pharmaceuticals.The modification of electrode results in efficient determination of electroactive species at very lower potential without any major interferences.The present study involves the fabrication of 8 voltammetric sensors for the drugs Metronidazole Benzoate, Sulfamethoxazole, Acyclovir, Pam Chloride , Trimethoprim , Tamsulosin Hydrochloride and Ceftriaxone Sodium.Two sensors were developed for the drug tamsulosin hydrochloride while one sensor each was developed for the other drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoemission optogalvanaic (POG) effect has been observed by irradiating copper target electrode, in a nitrogen discharge cell using 1.06 μm and frequency doubled 532 nm Nd:YAG laser pulse. Measurement of the nature of the variation of POG signal strength with 532 nm laser fluence confirms the two photon induced photoelectric emission from copper. However, using 1.06 μm laser pulses thermally assisted photoemission is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time resolved optical emission spectroscopy is employed to study the expansion dynamics of C2 species in a graphite plasma produced during the Nd : YAG ablation. At low laser fluences a single peak distribution with low kinetic energy is observed. At higher fluences a twin peak distribution is found. It has been noted that these double peak time of flight distribution splits into a triple peak structure at distances >_ 17mm from the target surface. The reason for the occurrence of multiple peak is due to different formation mechanisms of C2 species

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emission features of laser ablated graphite plume generated in a helium ambient atmosphere have been investigated with time and space resolved plasma diagnostic technique. Time resolved optical emission spectroscopy is employed to reveal the velocity distribution of different species ejected during ablation. At lower values of laser fluences only a slowly propagating component of C2 is seen. At high fluences emission from C2 shows a twin peak distribution in time. The formation of an emission peak with diminished time delay giving an energetic peak at higher laser fluences is attributed to many body recombination. It is also observed that these double peaks get modified into triple peak time of flight distribution at distances greater than 16 mm from the target. The occurrence of multiple peaks in the C2 emission is mainly due to the delays caused from the different formation mechanism of C2 species. The velocity distribution of the faster peak exhibits an oscillating character with distance from the target surface.