20 resultados para GD POWDER PHOSPHORS
em Cochin University of Science
Resumo:
Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.
Resumo:
Dielectric resonator ceramics with composition formula Ba[(D3+0.3 Bi0.2)Nb0.5]O3,where D3+=Y,Pr,Sm,Gd,Dy and Er,were prepared by the conventional ceramic preparation route
Resumo:
Microwave ceramic dielectric resonators (DRs) based on RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) have been prepared using the conventional solid -state ceramic route. The DR samples are characterized using XRD and SEM methods. The microwave dielectric properties are measured using resonant methods and a net work analyzer . The ceramics based on Ce, Pr, Nd, and Sin have dielectric constants in the range 32-54 and positive coefficient of thermal variation of resonant frequency (r,). The ceramics based on Gd, Tb, Dy, Y. and Yb have dielectric constants in the range 19-22 and negative Tf
Resumo:
Microwave dielectric ceramics based on RETiTaO6 (RE = La, Cc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) were prepared using a conventional solid-state ceramic route. The structure and microstructure of the samples were analyzed using x-ray diffraction and scanning electron microscopy techniques. The sintered samples were characterized in the microwave frequency region. The ceramics based on Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, which crystallize in orthorhombic aeschynite structure, had a relatively high dielectric constant and positive T f while those based on Ho, Er, and Yb, with orthorhombic euxenite structure, had a low dielectric constant and negative Tf. The RETiTaO6 ceramics had a high-quality factor. The dielectric constant and unit cell volume of the ceramics increased with an increase in ionic radius of the rare-earth ions, but density decreased with it. The value of Tf increased with an increase in RE ionic radii, and a change in the sign of Tf occurred when the ionic radius was between 0.90 and 0.92 A. The results indicated that the boundary of the aeschynite to euxenite morphotropic phase change lay between DyTiTaO6 and HoTiTaO6. Low-loss ceramics like ErTiTaO6 (Er = 20.6, Qxf = 85,500), EuTiTaO6 (Er = 41.3, Qxf = 59,500), and YTiTaO6 (Er = 22.1, Q„xf = 51,400) are potential candidates for dielectric resonator applications
Resumo:
Microwave dielectric resonators (DRs) based on Ba(B1,2Nbi/2)03 [B' = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In] complex perovskites have been prepared by conventional solid state ceramic route. The dielectric properties (relative permittivity, Er; quality factor, Q; and resonant frequency, rr) of the ceramics have been measured in the frequency range 4-6 GHz using resonance methods. The resonators have relatively high dielectric constant in the range 36-45, high quality factor and small temperature variation of resonant frequency. The dielectric properties are found to depend on the tolerance factor (t), ionic radius (r), and lattice parameter (ap)
Resumo:
The method of preparation of ZnS phosphors doped with praseodymium and copper is given. The electroluminescence (EL) spectrum of ZnS:Pr,Cl has two broad bands at 470 and 570 nm. ZnS:Cu,Pr,Cl gives white emission with spectral peaks at 470, 520, 570 and 640 nm. The EL spectra of both types of phosphor exhibit a conspicuous colour shift as the frequency of the excitation voltage is varied. Detailed investigations show that the relative intensities of spectral peaks are strongly dependent on the frequency of the excitation voltage. The colour shift is explained on the basis of the Schon-Klasens model.
Resumo:
Photoacoustic spectrum of samarium phthalocyanine powder is recorded and compared with previously reported UV–vis absorption spectra of the same dissolved in different liquid and solid host media. The Davidov splitting of Q band is observed in the PA spectrum but the two bands are overlapped considerably and the shorter wavelength band is more intense and dominating one in the powder spectrum.
Resumo:
This thesis has focused on the synthesis and analysis of some important phosphors (nano, bulk and thin film) for display applications. ACTFEL device with SrS:Cu as active layer was also fabricated.Three bulk phosphors: SrS:Cu,CI; SrS:Dy,Cl; and SrS:Dy,Cu,Cl were synthesized and their structural, optical and electrical properties were investigated. Special emphasis was given to, the analysis of the role of defects and charge compensating centers, on the structural changes of the host and hence the luminance. A new model describing the sensitizing behaviour of Cu in SrS:Dy,Cu,Cl two component phosphor was introduced. It was also found that addition of NH4CI as flux in SrS:Cu caused tremendous improvement in the structural and luminescence properties.A novel technique for ACTFEL phosphor deposition at low temperature was introduced. Polycrystalline films of SrS:Cu,F were synthesized at low temperature by concomitant evaporation of host and dopant by electron beam evaporation and thermal evaporatin methods.Copper doped strontium sulphide nanophosphor was synthesized for the first time. Improvement in the luminescence properties was observed in the nanophosphor with respect to it' s bulk counterpart.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Excitation and emission spectra of SrS : Mn : Ce phosphors have been studied in detail at various Mn and Ce concentrations. In order to study the effect of external pressure on phosphors, the samples were pretreated under various pressures. Four bands around 470 nm, 530 nm, 310 nm and 620 nm were observed, when the samples were excited with 265 nm radiation. The effect of pressure is to reduce the fluorescence ability of the phosphors, and the luminescence vanishes above O· 1 ton m-2 pressure. The fluorescence ability, however, can be regained on retiring the sample. The emission mechanism has been attributed to two luminescentcenters in the forbidden gap. An appreciable amount of photocurrent has also been observed for the sample.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
The subject of electroluminescence has currently acquired great importance because of its potential applications in display systems of a wide variety. A large number of scientists working in commercial, governmental as well as academic institutions all over the world are at present engaged in the intense effort to develop new and efficient phosphor materials and electroluminescent devices. This thesis presents the work carried out by the author in this field during the past few years. The studies discussed in this thesis are mostly confined to the development of some new phosphor materials, their uses in powder and thin film electroluminescent devices and to their electrical and spectral characteristics. Care has been taken to bring' out the physics involved in all the above aspects of the phenomenon