8 resultados para Fungal Proteins
em Cochin University of Science
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
Man's concern with environmental deterioration is one of the major reasons for the increased interest in marine and estuarine microbes. Microbes form an important link in the biogeochemical cycling and their cyclinq activites often determine to a large measure the potential productivity of an ecosystem In the recycling of the nutrients in the estuary, bacteria and fungi therefore play a particularly significant role.The allochthonous plant materials contain biopolymers such as cellulose, lignin, humus etc., that are difficult to degrade into simpler substances. The fungi have the ability to degrade _substances, thereby making them available for cycling within the system. The present study is devoted to find the composition and the activity of myco populations of Cochin backwater. For convenience the thesis is divided into eight chapters. The opening chapter briefly reviews the literature and projects the importance of work and the main objectives. Second chapter discusses the materials and methods. In the third chapter the systematic and taxonomy of estuarine yeasts are examined in detail since this information is scarcely available for our waters. The general ecological aspects of the yeasts and filamentous fungi in the area of study are examined in the fourth chapter using appropriate statistical techniques. A special reference to the fungi in a small mangrove ecosystem is attempted in the fifth chapter. The biochemical studies are discussed in the sixth chapter and the penultimate chapter provides an overall discussion. In the last chapter the summary of the work is presented.
Resumo:
This thesis is an attempt to make a comparative study of the composition of the muscle proteins of some commercially important species of fishes and shell fishes of our coast and their changes during preservation and processing. As a part of this the distribution of the major protein nitrogen fractions in several species of fishes and shell fishes was studied in detail.
Resumo:
In India, directed research on penaeid prawn nutrition was taken up only recently when the aquaculture of prawns gained momentum. One of the important penaeid prawns sought for culture and has great potential is Penagus indiggs, H.Milne Edwards. The Central Marine Fisheries Research Institute working on different aspects of culture of this species over the past one and half decades, has developed a hatchery technology for mass production of its seed and has suggested several improvements on its farming in the grow-out systems. One of the areas of active research in this direction has been on the nutrition of the species with a view to develop suitable feed not only for hatchery production of seed, but also in the field culture. As part of this investigation, the present study, on the evaluation of different protein and carbohydrate sources and mineral requirements for the juvenile E, indicus was taken up and the results obtained are embodied in the thesis
Resumo:
Pseudomonas aeruginosa MCCB 123 was grown in a synthetic medium for β-1,3 glucanase production. From the culture filtrate, β-1,3 glucanase was purified with a molecular mass of 45 kDa. The enzyme was a metallozyme as its β-1,3 glucanase activity got inhibited by the metal chelator EDTA. Optimum pH and temperature for β-1,3 glucanase activity on laminarin was found to be 7 and 50 °C respectively. The MCCB 123 β-1,3 glucanase was found to have good lytic action on a wide range of fungal isolates, and hence its application in fungal DNA extraction was evaluated. β-1,3 glucanase purified from the culture supernatant of P. aeruginosa MCCB 123 could be used for the extraction of fungal DNA without the addition of any other reagents generally used. Optimum pH and temperature of enzyme for fungal DNA extraction was found to be 7 and 65 °C respectively. This is the first report on β-1,3 glucanase employed in fungal DNA extraction
Resumo:
In the present investigation, three important stressors: cadmium ion (Cd++), salinity and temperature were selected to study their effects on protein and purine catabolism of O. mossambicus. Cadmium (Cd) is a biologically nonessential metal that can be toxic to aquatic animals. Cadmium is a trace element which is a common constituent of industrial effluents. It is a non-nutrient metal and toxic to fish even at low concentrations. Cadmium ions accumulate in sensitive organs like gills, liver, and kidney of fish in an unregulated manner . Thus; the toxic effects of cadmium are related to changes in natural physiological and biochemical processes in organism. The mechanics of osmoregulation (i.e. total solute and water regulation) are reasonably well understood (Evans, 1984, 1993), and most researchers agree that salinities that differ from the internal osmotic concentration of the fish must impose energetic regulatory costs for active ion transport. There is limited information on protein and purine catabolism of euryhaline fish during salinity adaptation. Within a range of non-lethal temperatures, fishes are generally able to cope with gradual temperature changes that are common in natural systems. However, rapid increases or decreases in ambient temperature may result in sub lethal physiological and behavioral responses. The catabolic pathways of proteins and purines are important biochemical processes. The results obtained signifies that O. mossambicus when exposed to different levels of cadmium ion, salinity and temperature show great variation in the catabolism of proteins and purines. The organism is trying to attain homeostasis in the presence of stressors by increasing or decreasing the activity of certain enzymes. The present study revealed that the protein and purine catabolism in O. mossambicus is sensitive to environmental stressors.
Resumo:
Lignocellulosic biomass is probably the best alternative resource for biofuel production and it is composed mainly of cellulose, hemicelluloses and lignin. Cellulose is the most abundant among the three and conversion of cellulose to glucose is catalyzed by the enzyme cellulase. Cellulases are groups of enzymes act synergistically upon cellulose to produce glucose and comprise of endoglucanase, cellobiohydrolase and β-glucosidase. β -glucosidase assumes great importance due to the fact that it is the rate limiting enzyme. Endoglucanases (EG) produces nicks in the cellulose polymer exposing reducing and non reducing ends, cellobiohydrolases (CBH) acts upon the reducing or non reducing ends to liberate cellobiose units, and β - glucosidases (BGL) cleaves the cellobiose to liberate glucose completing the hydrolysis. . β -glucosidases undergo feedback inhibition by their own product- β glucose, and cellobiose which is their substrate. Few filamentous fungi produce glucose tolerant β - glucosidases which can overcome this inhibition by tolerating the product concentration to a particular threshold. The present study had targeted a filamentous fungus producing glucose tolerant β - glucosidase which was identified by morphological as well as molecular method. The fungus showed 99% similarity to Aspergillus unguis strain which comes under the Aspergillus nidulans group where most of the glucose tolerant β -glucosidase belongs. The culture was designated the strain number NII 08123 and was deposited in the NII culture collection at CSIR-NIIST. β -glucosidase multiplicity is a common occurrence in fungal world and in A.unguis this was demonstrated using zymogram analysis. A total 5 extracellular isoforms were detected in fungus and the expression levels of these five isoforms varied based on the carbon source available in the medium. Three of these 5 isoforms were expressed in higher levels as identified by the increased fluorescence (due to larger amounts of MUG breakdown by enzyme action) and was speculated to contribute significantly to the total _- β glucosidase activity. These isoforms were named as BGL 1, BGL3 and BGL 5. Among the three, BGL5 was demonstrated to be the glucose tolerant β -glucosidase and this was a low molecular weight protein. Major fraction was a high molecular weight protein but with lesser tolerance to glucose. BGL 3 was between the two in both activity and glucose tolerance.121 Glucose tolerant .β -glucosidase was purified and characterized and kinetic analysis showed that the glucose inhibition constant (Ki) of the protein is 800mM and Km and Vmax of the enzyme was found to be 4.854 mM and 2.946 mol min-1mg protein-1respectively. The optimumtemperature was 60°C and pH 6.0. The molecular weight of the purified protein was ~10kDa in both SDS as well as Native PAGE indicating that the glucose tolerant BGL is a monomeric protein.The major β -glucosidase, BGL1 had a pH and temperature optima of 5.0 and 60 °C respectively. The apparent molecular weight of the Native protein is 240kDa. The Vmax and Km was 78.8 mol min-1mg protein-1 and 0.326mM respectively. Degenerate primers were designed for glycosyl hydrolase families 1, 3 and 5 and the BGL genes were amplified from genomic DNA of Aspergillus unguis. The sequence analyses performed on the amplicons results confirmed the presence of all the three genes. Amplicon with a size of ~500bp was sequenced and which matched to a GH1 –BGL from Aspergillus oryzae. GH3 degenerate primers producing amplicons were sequenced and the sequences matched to β - glucosidase of GH3 family from Aspergillus nidulans and Aspergillus acculateus. GH5 degenerate primers also gave amplification and sequencing results indicated the presence of GH5 family BGL gene in the Aspergillus unguis genomic DNA.From the partial gene sequencing results, specific as well as degenerate primers were designed for TAIL PCR. Sequencing results of the 1.0 Kb amplicon matched Aspergillus nidulans β -glucosidase gene which belongs to the GH1 family. The sequence mainly covered the N-Terminal region of the matching peptide. All the three BGL proteins ie. BGL1, BGL3 and BGL5 were purified by chromatography an electro elution from Native PAGE gels and were subjected to MALDI-TOF mass spectrometric analysis. The results showed that BGL1 peptide mass matched to . β -glucosidase-I of Aspergillus flavus which is a 92kDa protein with 69% protein coverage. The glucose tolerant β -glucosidase BGL5 mass matched to the catalytic C-terminal domain of β -glucosidase-F from Emericella nidulans, but the protein coverage was very low compared to the size of the Emericella nidulans protein. While comparing the size of BGL5 from Aspergillus unguis, the protein sequence coverage is more than 80%. BGL F is a glycosyl hydrolase family 3 protein.The properties of BGL5 seem to be very unique, in that it is a GH3 β -glucosidase with a very low molecular weight of ~10kDa and at the same time having catalytic activity and glucose 122 tolerance which is as yet un-described in GH β -glucosidases. The occurrence of a fully functional 10kDA protein with glucose tolerant BGL activity has tremendous implications both from the points of understanding the structure function relationships as well as for applications of BGL enzymes. BGL-3 showed similarity to BGL1 of Aspergillus aculateus which was another GH3 β -glucosidase. It may be noted that though PCR could detect GH1, GH3 and GH5 β-glucosidases in the fungus, the major isoforms BGL1 BGL3 and BGL5 were all GH3 family enzymes. This would imply that β-glucosidases belonging to other families may also co-exist in the fungus and the other minor isoforms detected in zymograms may account for them. In biomass hydrolysis, GT-BGL containing BGL enzyme was supplemented to cellulase and the performances of blends were compared with a cocktail where commercial β- glucosidase was supplemented to the biomass hydrolyzing enzyme preparation. The cocktail supplemented with A unguis BGL preparation yielded 555mg/g sugar in 12h compared to the commercial enzyme preparation which gave only 333mg/g in the same period and the maximum sugar yield of 858 mg/g was attained in 36h by the cocktail containing A. unguis BGL. While the commercial enzyme achieved almost similar sugar yield in 24h, there was rapid drop in sugar concentration after that, indicating probably the conversion of glucose back to di-or oligosaccharides by the transglycosylation activity of the BGl in that preparation. Compared this, the A.unguis enzyme containing preparation supported peak yields for longer duration (upto 48h) which is important for biomass conversion to other products since the hydrolysate has to undergo certain unit operations before it goes into the next stage ie – fermentation in any bioprocesses for production of either fuels or chemicals.. Most importantly the Aspergillus unguis BGL preparation yields approximately 1.6 fold increase in the sugar release compared to the commercial BGL within 12h of time interval and 2.25 fold increase in the sugar release compared to the control ie. Cellulase without BGL supplementation. The current study therefore leads to the identification of a potent new isolate producing glucose tolerant β - glucosidase. The organism identified as Aspergillus unguis comes under the Aspergillus nidulans group where most of the GT-BGL producers belong and the detailed studies showed that the glucose tolerant β -glucosidase was a very low molecular weight protein which probably belongs to the glycosyl hydrolase family 3. Inhibition kinetic studies helped to understand the Ki and it is the second highest among the nidulans group of Aspergilli. This has promoted us for a detailed study regarding the mechanism of glucose tolerance. The proteomic 123 analyses clearly indicate the presence of GH3 catalytic domain in the protein. Since the size of the protein is very low and still its active and showed glucose tolerance it is speculated that this could be an entirely new protein or the modification of the existing β -glucosidase with only the catalytic domain present in it. Hydrolysis experiments also qualify this BGL, a suitable candidate for the enzyme cocktail development for biomass hydrolysis