3 resultados para Full-length Receptor

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are a number of genes involved in the regulation of functional process in marine bivalves. In the case of pearl oyster, some of these genes have major role in the immune/defence function and biomineralization process involved in the pearl formation in them. As secondary filter feeders, pearl oysters are exposed to various kinds of stressors like bacteria, viruses, pesticides, industrial wastes, toxic metals and petroleum derivatives, making susceptible to diseases. Environmental changes and ambient stress also affect non-specific immunity, making the organisms vulnerable to infections. These stressors can trigger various cellular responses in the animals in their efforts to counteract the ill effects of the stress on them. These include the expression of defence related genes which encode factors such as antioxidant genes, pattern recognition receptor proteins etc. One of the strategies to combat these problems is to get insight into the disease resistance genes, and use them for disease control and health management. Similarly, although it is known that formation of pearl in molluscs is mediated by specialized proteins which are in turn regulated by specific genes encoding them, there is a paucity of sufficient information on these genes.In view of the above facts, studies on the defence related and pearl forming genes of the pearl oyster assumes importance from the point of view of both sustainable fishery management and aquaculture. At present, there is total lack of sufficient knowledge on the functional genes and their expressions in the Indian pearl oyster Pinctada fucata. Hence this work was taken up to identify and characterize the defence related and pearl forming genes, and study their expression through molecular means, in the Indian pearl oyster Pinctada fucata which are economically important for aquaculture at the southeast coast of India. The present study has successfully carried out the molecular identification, characterization and expression analysis of defence related antioxidant enzyme genes and pattern recognition proteins genes which play vital role in the defence against biotic and abiotic stressors. Antioxidant enzyme genes viz., Cu/Zn superoxide dismutase (Cu/Zn SOD), glutathione peroxidise (GPX) and glutathione-S-transferase (GST) were studied. Concerted approaches using the various molecular tools like polymerase chain reaction (PCR), random amplification of cDNA ends (RACE), molecular cloning and sequencing have resulted in the identification and characterization of full length sequences (924 bp) of the Cu/Zn SOD, most important antioxidant enzyme gene. BLAST search in NCBI confirmed the identity of the gene as Cu/Zn SOD. The presence of the characteristic amino acid sequences such as copper/zinc binding residues, family signature sequences and signal peptides were found out. Multiple sequence alignment comparison and phylogenetic analysis of the nucleotide and amino acid sequences using bioinformatics tools like BioEdit,MEGA etc revealed that the sequences were found to contain regions of diversity as well as homogeneity. Close evolutionary relationship between P. fucata and other aquatic invertebrates was revealed from the phylogenetic tree constructed using SOD amino acid sequence of P. fucata and other invertebrates as well as vertebrates

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anti-lipopolysaccharide factors are small proteins that bind and neutralize lipopolysaccharide and exhibit potent antimicrobial activities. This study presents the molecular characterization and phylogenetic analysis of the first ALF isoform (Pp-ALF1; JQ745295) identified from the hemocytes of Portunus pelagicus. The full length cDNA of Pp-ALF1 consisted of 880 base pairs encoding 293 amino acids with an ORF of 123 amino acids and contains a putative signal peptide of 24 amino acids. Pp-ALF1 possessed a predicted molecular weight (MW) of 13.86 kDa and theoretical isoelectric point (pI) of 8.49. Two highly conserved cysteine residues and putative LPS binding domain were observed in Pp-ALF1. Peptide model of Pp-ALF1 consisted of two α-helices crowded against a four-strand β-sheet. Comparison of amino acid sequences and neighbor joining tree showed that Pp-ALF1 has a maximum similarity (46%) to ALF present in Portunus trituberculatus followed by 39% similarity to ALF of Eriocheir sinensis and 38% similarity to ALFs of Scylla paramamosain and Scylla serrata. Pp-ALF1 is found to be a new isoform of ALF family and its characteristic similarity with other known ALFs signifies its role in protection against invading pathogens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) play a major role in innate immunity. Penaeidins are a family of AMPs that appear to be expressed in all penaeid shrimps. Penaeidins are composed of an N-terminal proline-rich domain, followed by a C-terminal domain containing six cysteine residues organized in two doublets. This study reports the first penaeidin AMP sequence, Fi-penaeidin (GenBank accession number HM243617) from the Indian white shrimp, Fenneropenaeus indicus. The full length cDNA consists of 186 base pairs encoding 61 amino acidswith an ORF of 42 amino acids and contains a putative signal peptide of 19 amino acids. Comparison of F. indicus penaeidin (Fi-penaeidin) with other known penaeidins showed that it shared maximum similarity with penaeidins of Farfantepenaeus paulensis and Farfantepenaeus subtilis (96% each). Fi-penaeidin has a predicted molecular weight (MW) of 4.478 kDa and theoretical isoelectric point (pI) of 5.3