3 resultados para French, Steven: Key concepts in philosophy

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In symmetric block ciphers, substitution and diffusion operations are performed in multiple rounds using sub-keys generated from a key generation procedure called key schedule. The key schedule plays a very important role in deciding the security of block ciphers. In this paper we propose a complex key generation procedure, based on matrix manipulations, which could be introduced in symmetric ciphers. The proposed key generation procedure offers two advantages. First, the procedure is simple to implement and has complexity in determining the sub-keys through crypt analysis. Secondly, the procedure produces a strong avalanche effect making many bits in the output block of a cipher to undergo changes with one bit change in the secret key. As a case study, matrix based key generation procedure has been introduced in Advanced Encryption Standard (AES) by replacing the existing key schedule of AES. The key avalanche and differential key propagation produced in AES have been observed. The paper describes the matrix based key generation procedure and the enhanced key avalanche and differential key propagation produced in AES. It has been shown that, the key avalanche effect and differential key propagation characteristics of AES have improved by replacing the AES key schedule with the Matrix based key generation procedure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptosystem using linear codes was developed in 1978 by Mc-Eliece. Later in 1985 Niederreiter and others developed a modified version of cryptosystem using concepts of linear codes. But these systems were not used frequently because of its larger key size. In this study we were designing a cryptosystem using the concepts of algebraic geometric codes with smaller key size. Error detection and correction can be done efficiently by simple decoding methods using the cryptosystem developed. Approach: Algebraic geometric codes are codes, generated using curves. The cryptosystem use basic concepts of elliptic curves cryptography and generator matrix. Decrypted information takes the form of a repetition code. Due to this complexity of decoding procedure is reduced. Error detection and correction can be carried out efficiently by solving a simple system of linear equations, there by imposing the concepts of security along with error detection and correction. Results: Implementation of the algorithm is done on MATLAB and comparative analysis is also done on various parameters of the system. Attacks are common to all cryptosystems. But by securely choosing curve, field and representation of elements in field, we can overcome the attacks and a stable system can be generated. Conclusion: The algorithm defined here protects the information from an intruder and also from the error in communication channel by efficient error correction methods.