9 resultados para First Nations and Inuit cinema

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the first use of polystyrene-supported poly(amidoamine) (PAMAM) dendrimers as heterogeneous basic organocatalysts for carbon–carbon bond formation. Polystyrene-supported PAMAM dendrimers of first, second and third generations have been used as reusable base catalysts in Knoevenagel condensations of carbonyl compounds with active methylene compounds. The reactions proceed in short periods of time and with 100% selectivity. This novel catalyst eliminates the use of aromatic and halogenated solvents, as well as complex purification processes. The catalysts can be recycled ten times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications. In the past, metals like Fe, Ni and Co were sought after for various applications though iron was in the forefront because of its cost effectiveness and abundance. Later, alloys based on Fe and Ni were increasingly employed. They were used in magnetic heads and in inductors. Ferrites entered the arena and subsequently most of the newer applications were based on ferrites, a ferrimagnetic material, whose composition can be tuned to tailor the magnetic properties. In the late 1950s a new class of magnetic material emerged on the magnetic horizon and they were fondly known as metallic glasses. They are well known for their soft magnetic properties. They were synthesized in the form of melt spun ribbons and are amorphous in nature and they are projected to replace the crystalline counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an attempt has been made to gather enough information regarding lactic acid bacteria from fish and shellfish of tropical regions. The occurrence and distribution of lactic acid bacteria in fresh and frozen marine fish and shellfish, farmed fish and shellfish, cured and pickled fish and shellfish have been investigated. Lactic Acid Bacteria (LAB) have for centuries been responsible for the fermentative preservation of many foods. They are used to retard spoilage and preserve foods through natural fermentations. They have found commercial applications as starter cultures in the dairy, baking, meat, fish, and vegetable and alcoholic beverage industries. They are industrially important organisms recognized for their fermentative ability as well as their nutritional benefits. These organisms produce various compounds such as organic acids, diacetyl, hydrogen peroxide and bacteriocins or bactericidal proteins during lactic fermentations.Biopreservation of foods using bacteriocin producing LAB cultures is becoming widely used. The antimicrobial effect of bacteriocins and other compounds produced during fermentation of carbohydrates are well known to inhibit the growth of certain food spoiling bacteria as well as a limited group of food poisoning and pathogenic bacteria LAB like Lactobacillus plantarum are widely used as starter cultures for the Production of fish ensilage. The present study is the first quantitative and qualitative study on the occurrence and distribution of lactic acid bacteria in fresh and frozen fish and prawn. It is concluded that Lactobacillus plantaruni was the predominant lactobacillus species in fresh and frozen fish and shellfish. The ability of selected Lactobacillus cultures to grow at low temperatures, high salt content, produce bacteriocins, rapidly ferment sugars and decrease the pH make them potential candidates for biopreservation of fish and shellfish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Garra surendranathanii is a hill stream cyprinid endemic to Kerala. According to IUCN based classification, G. surendranathanii is grouped under the threatened category. This endemic fish is having highly restricted and fragmented distribution and reported only from 5 river systems viz. Chalakudy, Periyar, Pamba, Achenkoil and Bharathapuzha. Categorization of this fish as a potential ornamental candidate can invariably add more pressure on the threat status of this particular species. Hence, this species is considered as one which requires foremost attention for conservation. Hitherto, no infomiation is available on the bionomics, resource characteristics and any conservation attempts of G. surendranathanii. Studies on detailed life history traits and development of captive breeding technique are indispensable for successful fishery management.The present study was undertaken with the following obj ectives: To study the Length-weight relationship and condition factor to ascertain the relationship between length and weight and general wellbeing ofthe fish To study the age and growth to understand the age composition of the exploited stock, age at first maturation and life span of the species. To study the reproductive biology of G. surendranathanii to gain insights in the process of gametogenesis, spawning, sex ratio, fecundity and other related aspects which are essential for developing captive breeding technology of this species. To develop captive breeding technology and cryopreservation ofgametes of G. surendranathanii for conservation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.