15 resultados para Finite temperatures

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine particles of cobalt ferrite were synthesized by the sol–gel method. Subsequent heat treatment at different temperatures yielded cobalt ferrites having different grain sizes. X-ray diffraction studies were carried out to elucidate the structure of all the samples. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. The variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to Maxwell–Wagner type interfacial polarization in general, with a noted variation from the expected behaviour for the cold synthesized samples. High permittivity and conductivity for small grains were explained on the basis of the correlated barrier-hopping model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal transport properties, thermal diffusivity, thermal conductivity and specific heat capacity of Dicalcium Lead Propionate (DLP) crystal have been measured following a modified photopyroelectric thermal wave method. The measurements have been carried out with thermal waves propagating along the three principal symmetry directions, so as to bring out the anisotropy in these parameters. The variations of the above parameters through two prominent phase transition temperatures of this crystal have also been measured to understand the variation of these parameters as it undergoes ferroelectric phase transitions. In addition, complete thermal analysis and FTIR measurements have been done on the crystal to bring out the correlation of these results with the corresponding thermal transport properties. All these results are presented and discussed. The data presented in this paper form a comprehensive set of results on the thermal transport properties of this crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many finite elements used in structural analysis possess deficiencies like shear locking, incompressibility locking, poor stress predictions within the element domain, violent stress oscillation, poor convergence etc. An approach that can probably overcome many of these problems would be to consider elements in which the assumed displacement functions satisfy the equations of stress field equilibrium. In this method, the finite element will not only have nodal equilibrium of forces, but also have inner stress field equilibrium. The displacement interpolation functions inside each individual element are truncated polynomial solutions of differential equations. Such elements are likely to give better solutions than the existing elements.In this thesis, a new family of finite elements in which the assumed displacement function satisfies the differential equations of stress field equilibrium is proposed. A general procedure for constructing the displacement functions and use of these functions in the generation of elemental stiffness matrices has been developed. The approach to develop field equilibrium elements is quite general and various elements to analyse different types of structures can be formulated from corresponding stress field equilibrium equations. Using this procedure, a nine node quadrilateral element SFCNQ for plane stress analysis, a sixteen node solid element SFCSS for three dimensional stress analysis and a four node quadrilateral element SFCFP for plate bending problems have been formulated.For implementing these elements, computer programs based on modular concepts have been developed. Numerical investigations on the performance of these elements have been carried out through standard test problems for validation purpose. Comparisons involving theoretical closed form solutions as well as results obtained with existing finite elements have also been made. It is found that the new elements perform well in all the situations considered. Solutions in all the cases converge correctly to the exact values. In many cases, convergence is faster when compared with other existing finite elements. The behaviour of field consistent elements would definitely generate a great deal of interest amongst the users of the finite elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Statistics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warships are generally sleek, slender with V shaped sections and block coefficient below 0.5, compared to fuller forms and higher values for commercial ships. They normally operate in the higher Froude number regime, and the hydrodynamic design is primarily aimed at achieving higher speeds with the minimum power. Therefore the structural design and analysis methods are different from those for commercial ships. Certain design guidelines have been given in documents like Naval Engineering Standards and one of the new developments in this regard is the introduction of classification society rules for the design of warships.The marine environment imposes subjective and objective uncertainties on ship structure. The uncertainties in loads, material properties etc.,. make reliable predictions of ship structural response a difficult task. Strength, stiffness and durability criteria for warship structures can be established by investigations on elastic analysis, ultimate strength analysis and reliability analysis. For analysis of complicated warship structures, special means and valid approximations are required.Preliminary structural design of a frigate size ship has been carried out . A finite element model of the hold model, representative of the complexities in the geometric configuration has been created using the finite element software NISA. Two other models representing the geometry to a limited extent also have been created —- one with two transverse frames and the attached plating alongwith the longitudinal members and the other representing the plating and longitudinal stiffeners between two transverse frames. Linear static analysis of the three models have been carried out and each one with three different boundary conditions. The structural responses have been checked for deflections and stresses against the permissible values. The structure has been found adequate in all the cases. The stresses and deflections predicted by the frame model are comparable with those of the hold model. But no such comparison has been realized for the interstiffener plating model with the other two models.Progressive collapse analyses of the models have been conducted for the three boundary conditions, considering geometric nonlinearity and then combined geometric and material nonlinearity for the hold and the frame models. von Mises — lllyushin yield criteria with elastic-perfectly plastic stress-strain curve has been chosen. ln each case, P-Delta curves have been generated and the ultimate load causing failure (ultimate load factor) has been identified as a multiple of the design load specified by NES.Reliability analysis of the hull module under combined geometric and material nonlinearities have been conducted. The Young's Modulus and the shell thickness have been chosen as the variables. Randomly generated values have been used in the analysis. First Order Second Moment has been used to predict the reliability index and thereafter, the probability of failure. The values have been compared against standard values published in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete is a universal material in the construction industry. With natural resources like sand and aggregate, fast depleting, it is time to look for alternate materials to substitute these in the process of making concrete. There are instances like exposure to solar radiation, fire, furnaces, and nuclear reactor vessels, special applications like missile launching pads etc., where concrete is exposed to temperature variations In this research work, an attempt has been made to understand the behaviour of concrete when weathered laterite aggregate is used in both conventional and self compacting normal strength concrete. The study has been extended to understand the thermal behaviour of both types of laterised concretes and to check suitability as a fire protection material. A systematic study of laterised concrete considering parameters like source of laterite aggregate, grades of Ordinary Portland Cement (OPC) and types of supplementary cementitious materials (fly ash and GGBFS) has been carried out to arrive at a feasible combination of various ingredients in laterised concrete. A mix design methodology has been proposed for making normal strength laterised self compacting concrete based on trial mixes and the same has also been validated. The physical and mechanical properties of laterised concretes have been studied with respect to different variables like exposure temperature (200°C, 400°C and 600°C) and cooling environment (air cooled and water cooled). The behaviour of ferrocement elements with laterised self compacting concrete has also been studied by varying the cover to mesh reinforcement (10mm to 50mm at an interval of 10mm), exposure temperature and cooling environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, nano particles of NiFe3O4, I_.l()5Feg5O4 and CoFegO4 are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFe3O4 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X — band are also conducted

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles of nickel ferrite have been synthesized by the sol–gel method and the effect of grain size on its structural and magnetic properties have been studied in detail. X-ray diffraction (XRD) studies revealed that all the samples are single phasic possessing the inverse spinel structure. Grain size of the sol–gel synthesized powders has been determined from the XRD data and the strain graph. A grain size of 9 nm was observed for the as prepared powders of NiFe2O4 obtained through the sol–gel method. It was also observed that strain was induced during the firing process. Magnetization measurements have been carried out on all the samples prepared in the present series. It was found that the specific magnetization of the nanosized NiFe2O4 powders was lower than that of the corresponding coarse-grained counterparts and decreased with a decrease in grain size. The coercivity of the sol–gel synthesized NiFe2O4 nanoparticles attained a maximum value when the grain size was 15nm and then decreased as the grain size was increased further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and analysis of a 400-step hybrid stepper motor for spacecraft applications. The design of the hybrid stepper motor for achieving a specific performance requires the choice of appropriate tooth geometry. In this paper, a detailed account of the results of two-dimensional finite-element (FE) analysis conducted with different tooth shapes such as square and trapezoidal, is presented. The use of % more corresponding increase in detent torque and distorted static torque profile. For the requirements of maximum torque density, less-detent torque, and better positional accuracy and smooth static torque profile, different pitch slotting with equal tooth width has to be provided. From the various FE models subjected to analysis trapezoidal teeth configuration with unequal tooth pitch on the stator and rotor is found to be the best configuration and is selected for fabrication. The designed motor is fabricated and the experimental results is compared with the FE results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research in the area of geopolymer is gaining momentum during the past 20 years. Studies confirm that geopolymer concrete has good compressive strength, tensile strength, flexural strength, modulus of elasticity and durability. These properties are comparable with OPC concrete.There are many occasions where concrete is exposed to elevated temperatures like fire exposure from thermal processor, exposure from furnaces, nuclear exposure, etc.. In such cases, understanding of the behaviour of concrete and structural members exposed to elevated temperatures is vital. Even though many research reports are available about the behaviour of OPC concrete at elevated temperatures, there is limited information available about the behaviour of geopolymer concrete after exposure to elevated temperatures. A preliminary study was carried out for the selection of a mix proportion. The important variable considered in the present study include alkali/fly ash ratio, percentage of total aggregate content, fine aggregate to total aggregate ratio, molarity of sodium hydroxide, sodium silicate to sodium hydroxide ratio, curing temperature and curing period. Influence of different variables on engineering properties of geopolymer concrete was investigated. The study on interface shear strength of reinforced and unreinforced geopolymer concrete as well as OPC concrete was also carried out. Engineering properties of fly ash based geopolymer concrete after exposure to elevated temperatures (ambient to 800 °C) were studied and the corresponding results were compared with those of conventional concrete. Scanning Electron Microscope analysis, Fourier Transform Infrared analysis, X-ray powder Diffractometer analysis and Thermogravimetric analysis of geopolymer mortar or paste at ambient temperature and after exposure to elevated temperature were also carried out in the present research work. Experimental study was conducted on geopolymer concrete beams after exposure to elevated temperatures (ambient to 800 °C). Load deflection characteristics, ductility and moment-curvature behaviour of the geopolymer concrete beams after exposure to elevated temperatures were investigated. Based on the present study, major conclusions derived could be summarized as follows. There is a definite proportion for various ingredients to achieve maximum strength properties. Geopolymer concrete with total aggregate content of 70% by volume, ratio of fine aggregate to total aggregate of 0.35, NaOH molarity 10, Na2SiO3/NaOH ratio of 2.5 and alkali to fly ash ratio of 0.55 gave maximum compressive strength in the present study. An early strength development in geopolymer concrete could be achieved by the proper selection of curing temperature and the period of curing. With 24 hours of curing at 100 °C, 96.4% of the 28th day cube compressive strength could be achieved in 7 days in the present study. The interface shear strength of geopolymer concrete is lower to that of OPC concrete. Compared to OPC concrete, a reduction in the interface shear strength by 33% and 29% was observed for unreinforced and reinforced geopolymer specimens respectively. The interface shear strength of geopolymer concrete is lower than ordinary Portland cement concrete. The interface shear strength of geopolymer concrete can be approximately estimated as 50% of the value obtained based on the available equations for the calculation of interface shear strength of ordinary portland cement concrete (method used in Mattock and ACI). Fly ash based geopolymer concrete undergoes a high rate of strength loss (compressive strength, tensile strength and modulus of elasticity) during its early heating period (up to 200 °C) compared to OPC concrete. At a temperature exposure beyond 600 °C, the unreacted crystalline materials in geopolymer concrete get transformed into amorphous state and undergo polymerization. As a result, there is no further strength loss (compressive strength, tensile strength and modulus of elasticity) in geopolymer concrete, whereas, OPC concrete continues to lose its strength properties at a faster rate beyond a temperature exposure of 600 °C. At present no equation is available to predict the strength properties of geopolymer concrete after exposure to elevated temperatures. Based on the study carried out, new equations have been proposed to predict the residual strengths (cube compressive strength, split tensile strength and modulus of elasticity) of geopolymer concrete after exposure to elevated temperatures (upto 800 °C). These equations could be used for material modelling until better refined equations are available. Compared to OPC concrete, geopolymer concrete shows better resistance against surface cracking when exposed to elevated temperatures. In the present study, while OPC concrete started developing cracks at 400 °C, geopolymer concrete did not show any visible cracks up to 600 °C and developed only minor cracks at an exposure temperatureof 800 °C. Geopolymer concrete beams develop crack at an early load stages if they are exposed to elevated temperatures. Even though the material strength of the geopolymer concrete does not decrease beyond 600 °C, the flexural strength of corresponding beam reduces rapidly after 600 °C temperature exposure, primarily due to the rapid loss of the strength of steel. With increase in temperature, the curvature at yield point of geopolymer concrete beam increases and thereby the ductility reduces. In the present study, compared to the ductility at ambient temperature, the ductility of geopolymer concrete beams reduces by 63.8% at 800 °C temperature exposure. Appropriate equations have been proposed to predict the service load crack width of geopolymer concrete beam exposed to elevated temperatures. These equations could be used to limit the service load on geopolymer concrete beams exposed to elevated temperatures (up to 800 °C) for a predefined crack width (between 0.1mm and 0.3 mm) or vice versa. The moment-curvature relationship of geopolymer concrete beams at ambient temperature is similar to that of RCC beams and this could be predicted using strain compatibility approach Once exposed to an elevated temperature, the strain compatibility approach underestimates the curvature of geopolymer concrete beams between the first cracking and yielding point.