11 resultados para Fields of Formal Power Series
em Cochin University of Science
Resumo:
Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.
Resumo:
The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.
Resumo:
An attempt is made to determine the relative power distribution in a step-index parabolic cylindrical waveguide (PCW) with high deformation across the direction of propagation. The guide is assumed to be made of silica. The scalar field approximation is employed for the analysis under which a vanishing refractive-index (RI) difference in the waveguide materials is considered. Further, no approximation for folds- is used in the analytical treatment. Due to the geometry of such waceguides, PCWs lose the well-defined modal discreteness, and a kind of mode bunching is observed instead, which becomes much more prominent in PCWs with high bends. However, with the increase in cross-sectional size, the mode-bunching tendency is slightly reduced. The general expressions for power in the guiding and nonguiding sections are obtained, and the fractional power patterns in all of the sections are presented for PCWs of various cross-sectional dimensions. It is observed that the confinement of power in the core section is increased for PCWs of larger cross-sectional size. Moreover, a fairly uniform distribution of power is seen over the modes having intermediate values of propagation constants
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue for sensor networks since most sensors are equipped with non-rechargeable batteries that have limitedlifetime. Routing schemes are used to transfer data collectedby sensor nodes to base stations. In the literature many routing protocols for wireless sensor networks are suggested. In this work, four routing protocols for wireless sensor networks viz Flooding, Gossiping, GBR and LEACH have been simulated using TinyOS and their power consumption is studied using PowerTOSSIM. A realization of these protocols has beencarried out using Mica2 Motes.
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the development and deployment of wireless sensor network for crop monitoring in the paddy fields of Kuttanad, a region of Kerala, the southern state of India.
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue forfor sensor networks since most sensors are equipped with non-rechargeable batteries that have limited lifetime.
Resumo:
Sensor networks are one of the fastest growing areas in broadwireless ad hoc networking (?Eld. A sensor node, typically'contains signal-processing circuits, micro-controllers and awireless transmitter/receiver antenna. Energy saving is oneof the critical issue for sensor networks since most sensorsare equipped with non-rechargeable batteries that have limited lifetime.In thiswork, four routing protocols for wireless sensor networks vizFlooding, Gossiping, GBR and LEACH have been simulated using Tiny OS and their power consumption is studied usingcaorwreiredTOoSuStIuMs.ingAMirceaal2izMaotitoens.of these protocols has been carried out using mica 2 motes
Resumo:
The present work is the study of filamentous algae in the paddy fields of Kuttanad and Kole lands of Kerala. This investigation was initiated by sampling of filamentous algae in Kuttanad during December 2010 to February 2011. A second phase of sampling was done from November 2011 to February 2012. The sampling periodicity corresponded to the crop growth starting from field preparation through sowing, and continued till the harvest. Sampling locations were selected from the active paddy cultivation regions of the six agronomic zones of Kuttanad. The numbers of sampling locations were proportional to the area of each zone. Algae of the Kole lands were collected during from October 2011 to January 2012. It was observed that blue-green algae dominated in both Kuttanad and Kole lands. Thirty two species of blue-green algae and eight species of green algae were identified from Kuttanad. The highest number of algal species was observed from Kayal lands in Kuttanad throughout the cropping season. Among the thirty two species of blue-green algae twenty five species are nonheterocystous and seven species are heterocystous. Twenty eight species of blue-green and six species of green algae were identified from Kole lands, and highest number of species was observed in Palakkal throughout the cropping season. Among the twenty eight species of blue-green algae collected from Kole lands twenty one species are non-heterocystous, and only seven species are heterocystous filamentous algae. Blooms of Spirogyra were observed during the second phase of sampling in Kuttanad and also in the Kole lands. The results of the germination study revealed that the extract of Spirogyra sp. inhibited seed germination and reduced seedling vigour. The growth of the treated seedlings was evaluated by pot experiments. The results clearly showed that Spirogyra sp. can negatively affect the seed germination, seedling vigour, and the yield of rice.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
This study is concerned with Autoregressive Moving Average (ARMA) models of time series. ARMA models form a subclass of the class of general linear models which represents stationary time series, a phenomenon encountered most often in practice by engineers, scientists and economists. It is always desirable to employ models which use parameters parsimoniously. Parsimony will be achieved by ARMA models because it has only finite number of parameters. Even though the discussion is primarily concerned with stationary time series, later we will take up the case of homogeneous non stationary time series which can be transformed to stationary time series. Time series models, obtained with the help of the present and past data is used for forecasting future values. Physical science as well as social science take benefits of forecasting models. The role of forecasting cuts across all fields of management-—finance, marketing, production, business economics, as also in signal process, communication engineering, chemical processes, electronics etc. This high applicability of time series is the motivation to this study.