8 resultados para Fibrin Tissue Adhesive
em Cochin University of Science
Resumo:
Plants were regenerated from callus induced from leaf disc explants of a tomato F, hybrid heterozygous for three marker loci (a), without anthocyanin (aw), and hairless (hl). Regenerants were studied for somaclonal variation at the phenotypic level by scoring for variation in the marker loci, and at the DNA level by probing geomic DNA blots with a chlorophyll a/b binding protein (Cab-3C) cDNA sequence. While no variation was observed at the phenotypic level in over 950 somaclones studied, DNA polymorphism for the Cab locus could be detected in two out of 17 somaclones tested. Tissue culture induced variation at the phenotypic level for specific loci is very low (less than 0.001 for a, awor hl) but DNA sequence changes are induced at much greater frequency (- 0.1 for a multicopy gene family such as Cab).
Resumo:
Carboxy Terminated Liquid Natural Rubber (CTNR) was prepared by photochemical reaction using maleic anhydride and masticated natural rubber (NR). The use of CTNR as an adhesive in bonding rubber to rubber and rubber to metal was studied. The peel strengths and lap shear strengths of the adherends which were bonded using CTNR were determined. The effect of using a tri isocyanate with CTNR in rubber to metal bonding was also studied. It is found that CTNR can effectively be used in bonding rubber to rubber and rubber to mild steel.
Resumo:
The study deals with the generation of variability for salt tolerance in rice using tissue culture techniques. Rice is the staple food of more than half of the world’s population. The management of drought, salinity and acidity in soils are all energy intensive agricultural practices. The Genetic variability is the basis of crop improvement. Somaclonal and androclonal variation can be effectively used for this purpose. In the present study, eight isozymes were studied and esterase and isocitric dehydrogenase was found to have varietal specific, developmental stage specific and stress specific banding pattern in rice. Under salt stress thickness of bands and enzyme activity showed changes. Pokkali, a moderately salt tolerant variety, had a specific band 7, which was present only in this variety and showed slight changes under stress. This band was faint in tillering and flowering stage .Based on the results obtained in the present study it is suggested that esterase could possibly be used as an isozyme marker for salt tolerance in rice. Varietal differences and stage specific variations could be detected using esterase and isocitric dehydrogenase . Moreover somaclonal and androclonal variation could be effectively detected using isozyme markers.
Resumo:
The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.
Resumo:
P rosea syn. Indica belong to the family of plumbaginaceae, is an important medicinal plant, cultivated widely in India. The roots of these plant are generally used for medicinal purposes mainly as diuretic, germicidal, vessicant, and abortifacient. It is also used for anaemia, diarrhea, leprosy and common wart. The bark of the root contains orange yellow pigment named plumbagin, a crystalline substance, belongs to the class of naphthoquinone. Its chemical structure is 5-hydroxy 2-methyl 1,4naphthoquinone. Apart from P rosea, P zeylanica, P europea, Drosera and Drosophyllum also contains plumbagin. The most exploited source of plumbagin is, of course, P. rosea roots. The roots contain O.9mg/ g D.Wt. of plumbagin in the roots. These plants grow very slowly and the roots suitable for plumbagin extraction can be obtained only after several years of growth. The productivity of the plant is also rather poor. The focus of the present study was to develop alternative strategies to obtain plumbagin. The tissue culture of P rosea for micropropagation has been studied
Resumo:
A growth medium with Leibovitz-15 L-15.as the base, supplemented with foetal bovine serum 10% vrv., fish muscle extract 10% vrv., prawn muscle extract 10% vrv., lectin concanavalin A. 0.02 mg mly1., lipopolysaccharide 0.02 mg mly1., glucose D 0.2 mg mly1., ovary extract 0.5% vrv.and prawn haemolymph 0.5%. has been formulated with 354"10 mOsm for the development and maintenance of a cell culture system from the ovarian tissue of African catfish, Clarias gariepinus. For its subculturing, a cell dissociationrextracting solution, composed of equal portions of trypsin phosphate versene glucose TPVG. containing 0.0125% wrv.trypsin and 25% vrv.non-enzymatic cell dissociation solution 1 and 2, has also been developed with which the cell culture can be passaged 15 times after which they cease to multiply and consequently perish. The cell cultures can be maintained for 12–15 days without fluid change between the passages. This is the first report of a cell culture system from the ovarian tissues of African catfish
Resumo:
A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.