4 resultados para Ferroelectric crystals.

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents in detail. the theoretical developments and calculations which are used for the simultaneous determination of thermal parameters, namely thermal diffusivity (a). thermal effusivity (e), thermal conductivity (K) and heat capacity (cr ) employing photopyroelectric technique. In our calculations. we have assumed that the pyroelectric detector is supported on a copper backing. so that there will be sufficient heat exchange between the heated pyroelectric detector and the backing so that the signal fluctuations are reduced to a minimum. Since the PPE signal depends on the properties of the detector that are also temperature dependent. a careful temperature calibration of the system need to be carried out. APPE cell has been fabricated for the measurements that can be used to measure the thermal properties of solid samples from ~ 90 K to ~ 350 K. The cell has been calibrated using standard samples and the accuracy of the technique is found to be of the order of± 1%.In this thesis, we have taken up work n photopyroelectric investigation of thermal parameters of ferroelectric crystals such as Glycine phosphite (NH3CH2COOH3P03), Triglycine sulfate and Thiourea as well as mixed valence perovskites samples such as Lead doped Lanthanum Manganate (Lal_xPb~Mn03) Calcium doped (Lal_xCaxMnOJ) and Nickel doped Lanthanum Stroncium Cobaltate (Lao~Sro5Ni,Col_x03).The three ferroelectric crystals are prepared by the slow evaporation technique and the mixed valence perovskites by solid state reaction technique.Mixed valence perovskites, with the general formula RI_xA~Mn03 (R = La. Nd or Pr and A = Ba, Ca, Sr or Pb) have been materials of intense experimental and theoretical studies over the past few years. These materials show . colossal magneloresis/ance' (CMR) in samples with 0.2 < x < 0.5 in such a doping region, resistivity exhibits a peak at T = T p' the metal - insulator transition temperature. The system exhibits metallic characteristics with d %T > Oabove Tp (wherep is the resistivity) and insulating characteristics with d % T < 0 above T p. Despite intensive investigations on the CMR phenomena and associated electrical properties. not much work has been done on the variation of thermal properties of these samples. We have been quite successful in finding out the nature of anomaly associated with thermal properties when the sample undergoes M-I transition.The ferroelectric crystal showing para-ferroelectric phase transitions - Glycine phosphite. Thiourea and Triglycine sulfate - are studied in detail in order to see how well the PPE technique enables one to measure the thermal parameters during phase transitions. It is seen that the phase transition gets clearly reflected in the variation of thermal parameters. The anisotropy in thermal transport along different crystallographic directions are explained in terms of the elastic anisotropy and lattice contribution to the thermal conductivity. Interesting new results have been obtained on the above samples and are presented in three different chapters of the thesis.In summary. we have carried investigations of the variations of the thermal parameters during phase transitions employing photopyroelectric technique. The results obtained on different systems are important not only in understanding the physics behind the transitions but also in establishing the potentiality of the PPE tool. The full potential of PPE technique for the investigation of optical and thermal properties of materials still remains to be taken advantage of by workers in this field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis aims to present the results of the experimental investigations on the electrical properties like electrical conductivity, dielectric constant and ionic thermo~ currents in certain ammonium containing ferroelectric crystals viz. LiNH4SO4, (NH4)2SO4 and (NH4)5H(SO4)2. Special attention has been paid in revealing the mechanisms of electrical conduction in the various phases of these crystals and those asso~ ciated with the different phase transitions occurring in them, by making studies on doped, quenched and deuterated crystals. The report on the observation of two new phase transitions in (NH4) S O2 and of a similar one in ( NH4 ) H (2SO4 ) are included. The relaxation mechanisms of the impurity-vacancy complexes and the space charge phenomena in pure and doped crystals of LiNH4SO4 and (NH4)2SO4 and the observation of a new type of ionic thermo-current viz. Protonic Thermo-Current (PTC) in these crystals are also presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elastic properties of sodium doped Lithium potassium sulphate, LiK0.9Na0.1SO4, crystal has been studied by ultrasonic Pulse Echo Overlap [PEO] technique and are reported for the first time. The controversy regarding the type of crystal found while growth is performed at 35 °C with equimolar fraction of Li2SO4H2O, K2SO4 and Na2SO4 has been resolved by studying the elastic properties. The importance of this crystal is that it exhibits pyroelectric, ferroelectric and electro optic properties. It is simultaneously ferroelastic and superionic. The elastic properties of LiK0.9Na0.1SO4 crystal are well studied by measuring ultrasonic velocity in the crystal in certain specified crystallographic directions and evaluating the elastic stiffness constants, compliance constants and Poisson’s ratios. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the surface plots of phase velocity, slowness and linear compressibility in a-b and a-c planes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past years there has been considerable interest in the growth of single crystals both from the point of view of basic research and technological application. With the revolutionary emergence of solid state electronics which is based on single crystal technolo8Ys basic and applied studies on crystal growth and characterization _have gained a-more significant role in material science. These studies are being carried out for single crystals not only of semiconductor and other electronic materials but also of metals and insulators. Many organic crystals belonging to the orthorhombic class exhibit ferroelectric, electrooptic, triboluminescent and piezoelectric properties. Diammonium Hydrogen Citrate (DAHC) crystals are reported to be piezoelectric and triboluminescent /1/. Koptsik et al. /2/ have reported the piezoelectric nature of Citric Acid Monohydrate (CA) crystals. And since not much work has been done on these crystals, it has been thought useful to grow and characterize these crystals. This thesis presents a study of the growth of these crystals from solution and their defect structures. The results of the microindentation and thermal analysis are presented. Dielectric, fractographic, infrared (IR) and ultraviolet (UV) studies of DAHC crystals are also reported