3 resultados para Faults detection and location
em Cochin University of Science
Resumo:
Department of Computer Applications, Cochin University of Science and Technology
Resumo:
Here we investigate the diversity of pathogenic Vibrio species in marine environments close to Suva, Fiji. We use four distinct yet complementary analyses – biochemical testing, phylogenetic analyses, metagenomic analyses and molecular typing – to provide some preliminary insights into the diversity of vibrios in this region. Taken together our analyses confirmed the presence of nine Vibrio species, including three of the most important disease-causing vibrios (i.e. V. cholerae, V. parahaemolyticus and V. vulnificus), in Fijian marine environments. Furthermore, since toxigenic V. parahaemolyticus are present on fish for consumption we suggest these bacteria represent a potential public health risk. Our results from Illumina short read sequencing are encouraging in the context of microbial profiling and biomonitoring. They suggest this approach may offer an efficient and costeffective method for studying the dynamics of microbial diversity in marine environments over time.
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing