6 resultados para Famous orators
em Cochin University of Science
Resumo:
The current study is an attempt to find a means of lowering oxalate concentration in individuals susceptible to recurrent calcium oxalate stone disease.The formation of renal stone composed of calcium oxalate is a complex process that remains poorly understood and treatment of idiopathic recurrent stone formers is quite difficult and this area has attracted lots of research workers. The main objective of this work are to study the effect of certain mono and dicarboxylic acids on calcium oxalate crystal growth in vitro, isolation and characterization of oxalate degrading bacteria, study the biochemical effect of sodium glycollate and dicarboxylic acids on oxalate metabolism in experimental stone forming rats and To investigate the effect of dicarboxylic acids on oxalate metabolism in experimental hyperoxaluric rats. Oxalic acid is one of the most highly oxidized organic compound widely distributed in the diets of man and animals, and ingestion of plants that contain high concentration of oxalate may lead to intoxication. Excessive ingestion of dietary oxalate may lead to hyperoxaluria and calcium oxalate stone disease.The formation of calcium oxalate stone in the urine is dependent on the saturation level of both calcium and oxalate. Thus the management of one or both of these ions in individuals susceptible to urolithiasis appears to be important. The control of endogenous oxalate synthesis from its precursors in hyperoxaluric situation is likely to yield beneficial results and can be a useful approach in the medical management of urinary stones. A variety of compounds have been investigated to curtain endogenous oxalate synthesis which is a crucial factor, most of these compounds have not proved to be effective in the in vivo situation and some of them are not free from the toxic effect. The non-operative management of stone disease has been practiced in ancient India in the three famous indigenous systems of medicine, Ayurveda, Unani and Siddha, and proved to be effective.However the efficiency of most of these substances is still questionable and demands further study. Man as well as other mammals cannot metabolize oxalic acid. Excessive ingestion of oxalic acid can arise from oxalate rich food and from its major metabolic precursors, glycollate, glyoxylate and ascorbic acid can lead to an acute oxalate toxicity. Increasedlevels of circulating oxalate, which can result in a variety of diseases including renal failure and oxalate lithiasis. The ability to enzymatically degrade oxalate to less noxious Isubstances, formate and CO2, could benefit a great number of individuals including those afflicted with hyperoxaluria and calcium oxalate stone disease.
Resumo:
The Sediment budgeting studies are done to bring out the coastal processes at work, to understand the beach-innershelf sedimentary dynamics and to assess the stability of any coastal stretch. There is a dearth of such studies as far as the Indian coast is concerned. The Chavara coast of Kollam district, Kerala, is world famous for its rich heavy mineral resources. These mineral resources are being commercially mined by the Indian Rare Earths Ltd. (IREL) and Kerala Minerals and Metals Ltd. (KMML), two Public Sector Undertakings located in the area. The impact of mining on stability of the beach has been a point of debate among the local people as well as researchers. The coastal stretch of 22km length from Neendakara to Kayamkulam which is referred to as the Chavara coast. The tidal, wind driven and continental shelf currents, there could also be the contribution of coastal trapped waves and baroclinic flow associated with the plumes of fresh water coming from the estuaries. The main objectives of the study are the hydrodynamic processes and mechanism involved in the sediment movement along the Chavara coast, Identify the different sources and sinks of beach sand along the coast, Quantify the sediment input/output into/from the coast and assess the erosion/accretion scenario of the coast.
Resumo:
In this computerized, globalised and internet world our computer collects various types of information’s about every human being and stores them in files secreted deep on its hard drive. Files like cache, browser history and other temporary Internet files can be used to store sensitive information like logins and passwords, names addresses, and even credit card numbers. Now, a hacker can get at this information by wrong means and share with someone else or can install some nasty software on your computer that will extract your sensitive and secret information. Identity Theft posses a very serious problem to everyone today. If you have a driver’s license, a bank account, a computer, ration card number, PAN card number, ATM card or simply a social security number you are more than at risk, you are a target. Whether you are new to the idea of ID Theft, or you have some unanswered questions, we’ve compiled a quick refresher list below that should bring you up to speed. Identity theft is a term used to refer to fraud that involves pretending to be someone else in order to steal money or get other benefits. Identity theft is a serious crime, which is increasing at tremendous rate all over the world after the Internet evolution. There is widespread agreement that identity theft causes financial damage to consumers, lending institutions, retail establishments, and the economy as a whole. Surprisingly, there is little good public information available about the scope of the crime and the actual damages it inflicts. Accounts of identity theft in recent mass media and in film or literature have centered on the exploits of 'hackers' - variously lauded or reviled - who are depicted as cleverly subverting corporate firewalls or other data protection defenses to gain unauthorized access to credit card details, personnel records and other information. Reality is more complicated, with electronic identity fraud taking a range of forms. The impact of those forms is not necessarily quantifiable as a financial loss; it can involve intangible damage to reputation, time spent dealing with disinformation and exclusion from particular services because a stolen name has been used improperly. Overall we can consider electronic networks as an enabler for identity theft, with the thief for example gaining information online for action offline and the basis for theft or other injury online. As Fisher pointed out "These new forms of hightech identity and securities fraud pose serious risks to investors and brokerage firms across the globe," I am a victim of identity theft. Being a victim of identity theft I felt the need for creating an awareness among the computer and internet users particularly youngsters in India. Nearly 70 per cent of Indian‘s population are living in villages. Government of India already started providing computer and internet facilities even to the remote villages through various rural development and rural upliftment programmes. Highly educated people, established companies, world famous financial institutions are becoming victim of identity theft. The question here is how vulnerable the illiterate and innocent rural people are if they suddenly exposed to a new device through which some one can extract and exploit their personal data without their knowledge? In this research work an attempt has been made to bring out the real problems associated with Identity theft in developed countries from an economist point of view.
Resumo:
Mathematicians who make significant contributions towards development of mathematical science are not getting the recognition they deserve, according to Cusat Vice Chancellor Dr. J. Letha. She was delivering the inaugural address at the International Conference on Semigroups, Algebras and Applications (ICSA 2015) organized by Dept. of Mathematics, Cochin university of Science and Technology on Thursday. Mathematics plays an important role in the development of basic science. The academic community should not delay in accepting and appreciating this, Dr. Letha added. Dr. Godfrey Louis, Dean, Faculty of Science presided over the inaugural function. Prof. P. G. Romeo, Head, Dept. of Mathematics, Prof. John C. Meakin, University of Nebraska-Lincoln, USA, Prof. A. N. Balchand, Syndicate Member, Prof. K. A. Zakkariya, Syndicate Member, Prof. A. R. Rajan, Emeritus Professor, University of Kerala and Prof. A. Vijayakumar, Dept. of Mathematics, Cusat addressed the gathering. Around 50 research papers will be presented at the Conference.Prof. K. S. S. Nambooripad, the internationally famous mathematician with enormous contributions in the field of semigroup theory, who has attained eighty years of age will be felicitated on 18th at 5.00 pm during a function presided over by Dr. K. Poulose Jacob, Pro-Vice Chancellor. Dr. Suresh Das, Executive President, KSCSTE, Dr. A. M. Mathai, Director, CMSS and President, Indian Mathematical Society, Dr. P. G. Romeo, Head, Dept. of Mathematics and Dr. B. Lakshmi, Dept. of Mathematics will speak on the occasion.
Resumo:
The evolution of coast through geological time scale is dependent on the transgression-regression event subsequent to the rise or fall of sea level. This event is accounted by investigation of the vertical sediment deposition patterns and their interrelationship for paleo-enviornmental reconstruction. Different methods like sedimentological (grain size and micro-morphological) and geochemical (elemental relationship) analyses as well as radiocarbon dating are generally used to decipher the sea level changes and paleoclimatic conditions of the Quaternary sediment sequence. For the Indian coast with a coastline length of about 7500 km, studies on geological and geomorphological signatures of sea level changes during the Quaternary were reported in general by researchers during the last two decades. However, for the southwest coast of India particularily Kerala which is famous for its coastal landforms comprising of estuaries, lagoons, backwaters, coastal plains, cliffs and barrier beaches, studies pertaining to the marine transgression-regression events in the southern region are limited. The Neendakara-Kayamkulam coastal stretch in central Kerala where the coast is manifested with shore parallel Kayamkulam Lagoon on one side and shore perpendicular Ashtamudi Estuary on the other side indicating existence of an uplifted prograded coastal margin followed by barrier beaches, backwater channels, ridge and runnel topography is an ideal site for studying such events. Hence the present study has been taken up in this context to address the gap area. The location for collection of core samples representing coastal plain, estuarylagoon and offshore regions have been identified based on published literature and available sedimentary records. The objectives of the research work are: To study the lithological variations and depositional environments of sediment cores along the coastal plain, estuary-lagoon and offshore regions between Kollam and Kayamkulam in the central Kerala coast To study the transportation and diagenetic history of sediments in the area To investigate the geochemical characterization of sediments and to elucidate the source-sink relationship To understand the marine transgression-regression events and to propose a conceptual model for the region The thesis comprises of 8 chapters. The first chapter embodies the preamble for the selection and significance of this research work. The study area is introduced with details on its physiographical, geological, geomorphological, rainfall and climate information. A review of literature, compiling the research on different aspects such as physico-chemical, geomorphological, tectonics, transgression-regression events are presented in the second chapter and they are broadly classified into three viz:- International, National and Kerala. The field data collection and laboratory analyses adopted in the research work are discussed in the third chapter. For collection of sediment core samples from the coastal plains, rotary drilling method was employed whereas for the estuary-lagoon and offshore locations the gravity/piston corer method was adopted. The collected subsurficial samples were analysed for texture, surface micro-texture, elemental analysis, XRD and radiocarbon dating techniques for age determination. The fourth chapter deals with the textural analysis of the core samples collected from various predefined locations of the study area. The result reveals that the Ashtamudi Estuary is composed of silty clay to clayey type of sediments whereas offshore cores are carpeted with silty clay to relict sand. Investigation of the source of sediments deposited in the coastal plain located on either side of the estuary indicates the dominance of terrigenous to marine origin in the southern region whereas it is predominantly of marine origin towards the north. Further the hydrodynamic conditions as well as the depositional enviornment of the sediment cores are elucidated based on statistical parameters that decipher the deposition pattern at various locations viz., coastal plain (open to closed basin), Ashtamudi Estuary (partially open to restricted estuary to closed basin) and offshore (open channel). The intensity of clay minerals is also discussed. From the results of radiocarbon dating the sediment depositional environments were deciphered.The results of the microtextural study of sediment samples (quartz grains) using Scanning Electron Microscope (SEM) are presented in the fifth chapter. These results throw light on the processes of transport and diagenetic history of the detrital sediments. Based on the lithological variations, selected quartz grains of different environments were also analysed. The study indicates that the southern coastal plain sediments were transported and deposited mechanically under fluvial environment followed by diagenesis under prolonged marine incursion. But in the case of the northern coastal plain, the sediments were transported and deposited under littoral environment indicating the dominance of marine incursion through mechanical as well as chemical processes. The quartz grains of the Ashtamudi Estuary indicate fluvial origin. The surface texture features of the offshore sediments suggest that the quartz grains are of littoral origin and represent the relict beach deposits. The geochemical characterisation of sediment cores based on geochemical classification, sediment maturity, palaeo-weathering and provenance in different environments are discussed in the sixth chapter. In the seventh chapter the integration of multiproxies data along with radiocarbon dates are presented and finally evolution and depositional history based on transgression–regression events is deciphered. The eighth chapter summarizes the major findings and conclusions of the study with recommendation for future work.
Resumo:
In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.