4 resultados para FLOOR

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metals present in the surface sediments have high demand on a global perspective, and the main reservoir of these elements is believed to be the ocean floor. A lot of studies on metals are going on throughout the world for its quantification and exploitation. Even though, some preliminary attempts have been made in selected areas for the quantitative study of metals in the western continental shelf of India, no comprehensive work has been reported so far. The importance of this study also lies on the fact that there has not been a proper evaluation of the impact of the Great Tsunami of 2004 on the coastal areas of the south India. In View of this, an attempt has been made to address the seasonal distribution, behavior and mechanisms which control the deposition of metals in the sediments of the western continental shelf and Cochin Estuary, an annex to this coastal marine region.Surface sediment samples were collected seasonally from two subenvironemnts of southwest coast of India, (continental shelf of Kerala and Cochin estuarine system), to estimate the seasonal distribution and geochemical behavior of non-transition, transition, rare-earth elements, Th and U. Bottom water samples were also taken from each station, and analysed for temperature, salinity and dissolved oxygen, hence the response of redox sensitive elements to oxygen minimum zone can be addressed. In addition, other sedimentary parameters such as sand, silt, clay fractions, CaCO3 and organic carbon content were also estimated to evaluate the control factors on level of metals present in the sediment. The study used different environmental data analysis techniques to evaluate the distribution and behavior of elements during different seasons. This includes environmental parameters such as elemental normalisation, enrichment factor, element excess, cerium and europium anomalies and authigenic uranium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bottom trawling is one among the most destructive human induced physical disturbances inflicted to seabed and its living communities. The bottom trawls are designed to tow along the sea floor, which on its operation indiscriminately smashes everything on their way crushing, killing, burying and exposing to predators the benthic fauna. Bottom trawling causes physical and biological damages that are irreversible, extensive and long lasting. The commercial trawling fleet of India consists of 29,241 small and medium-fishing boats. The northwest coast of India has the largest fishing fleet consisting of 23,618 mechanized vessels, especially the bottom trawlers. However, attempts were not made to study the impact of bottom trawling along Northwest coast of India. The estimated optimum fleet size of Gujarat is 1,473 mechanised trawlers while 7402 commercial trawlers are operated from the coast of Gujarat. Veraval port was designed initially for 1,200 fishing trawlers but 2793 trawlers are being operated from this port making it the largest trawler port of Gujarat. The aim of this study was to investigate the effects of bottom trawling on the substratum and the associated benthic communities of commercial trawling grounds of Veraval coast. The study compared the differences between the samples collected before and after experimental trawling to detect the impacts of bottom trawling. Attempts were made to assess the possible impact of bottom trawling on:(i) the sediment characteristics (ii)the sediment heavy metals (iii) epifauna (iv) macrobenthos and (v) meiobenthos. This study is expected to generate information on trawling impacts of the studied area that will help in better management of the biological diversity and integrity of the benthic fauna off Veraval coast. An exhaustive review on the studies conducted around the world and in India on impact of bottom trawling on the benthic fauna is also detailed.In the present study, the bottom trawling induced variations on sediment organic matter, epifauna, macrobenthos and meiobenthos were evident. It was also observed that the seasonal/ natural variations were more prominent masking the trawling effect on sediment texture and heavy metals. Enforcement of control of excess bottom trawlers and popularization of semi pelagic trawls designed to operate a little distance above the sea bottom for off bottom resources will minimize disturbance on the sea bottom. Training and creating awareness in responsible fishing should be made mandatory requirements, to the coastal communities. They should be made wardens to protect the valuable resources for the benefit of sustainability. To protect the biodiversity and ecosystem health, the imminent need is to survey and make catalogue, identification of sensitive areas or hot spots and to adopt management strategies for the conservation and biodiversity protection of benthic fauna. The present study is a pioneering work carried out along Veraval coast. This thesis will provide a major fillip to the studies on impact of bottom trawling on the benthic fauna along the coast of India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth