11 resultados para FIXED TIMED ARTIFICIAL INSEMINATION

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

’l‘he reproductive physiology of the female palaemonid prawn M. idella has been investigated by adopting a comprehensive approach to the problem. The major aspects of the study included investigations on breeding biology and process of oogenesis, variations in the biochemical components in relation to maturation, neuroendocrine relations and control over reproduction, and artificial insemination. The prawns used in the present study were procured from Vembanad Lake at Panavally village - a place nearly 20 km. away from Cochin. The studies were carried out using standard histological and biochemical methods. The modern technique of electroejaculation was adopted for extrusion of spermatophores in artificial insemination experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mathematical formulation of empirically developed formulas Jirr the calculation of the resonant frequency of a thick-substrate (h s 0.08151 A,,) microstrip antenna has been analyzed. With the use qt' tunnel-based artificial neural networks (ANNs), the resonant frequency of antennas with h satisfying the thick-substrate condition are calculated and compared with the existing experimental results and also with the simulation results obtained with the use of an IE3D software package. The artificial neural network results are in very good agreement with the experimental results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invertase was immobilized on acid activated montmorillonite via two independent procedures, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and their activity was tested in a fixed bed reactor. XRD revealed that the enzyme was situated on the periphery of the clay and the side chains of different amino acid residues were involved in intercalation with the clay matrix. NMR demonstrated that tetrahedral Al was linked to the enzyme during adsorption and the octahedral Al was involved during covalent binding. Secondary interaction of the enzyme with Al was also observed. N2 adsorption studies showed that covalent binding of enzymes caused pore blockage since the highly polymeric species were located at the pore entrance. The fixed bed reactor proved to be efficient for the immobilized invertase. The optimum pH and pH stability improved upon immobilization. The kinetic parameters calculated also showed an enhanced efficiency of the immobilized systems. They could be used continuously for long period. Covalently bound invertase demonstrated greater operational stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. This paper describes how an ANN can be used to identify the spectral lines of elements. The spectral lines of Cadmium (Cd), Calcium (Ca), Iron (Fe), Lithium (Li), Mercury (Hg), Potassium (K) and Strontium (Sr) in the visible range are chosen for the investigation. One of the unique features of this technique is that it uses the whole spectrum in the visible range instead of individual spectral lines. The spectrum of a sample taken with a spectrometer contains both original peaks and spurious peaks. It is a tedious task to identify these peaks to determine the elements present in the sample. ANNs capability of retrieving original data from noisy spectrum is also explored in this paper. The importance of the need of sufficient data for training ANNs to get accurate results is also emphasized. Two networks are examined: one trained in all spectral lines and other with the persistent lines only. The network trained in all spectral lines is found to be superior in analyzing the spectrum even in a noisy environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components