6 resultados para FINGERPRINT VERIFICATION
em Cochin University of Science
Resumo:
Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold
Resumo:
In this paper, an improved technique for evolving wavelet coefficients refined for compression and reconstruction of fingerprint images is presented. The FBI fingerprint compression standard [1, 2] uses the cdf 9/7 wavelet filter coefficients. Lifting scheme is an efficient way to represent classical wavelets with fewer filter coefficients [3, 4]. Here Genetic algorithm (GA) is used to evolve better lifting filter coefficients for cdf 9/7 wavelet to compress and reconstruct fingerprint images with better quality. Since the lifting filter coefficients are few in numbers compared to the corresponding classical wavelet filter coefficients, they are evolved at a faster rate using GA. A better reconstructed image quality in terms of Peak-Signal-to-Noise-Ratio (PSNR) is achieved with the best lifting filter coefficients evolved for a compression ratio 16:1. These evolved coefficients perform well for other compression ratios also.
Resumo:
In this article, techniques have been presented for faster evolution of wavelet lifting coefficients for fingerprint image compression (FIC). In addition to increasing the computational speed by 81.35%, the coefficients performed much better than the reported coefficients in literature. Generally, full-size images are used for evolving wavelet coefficients, which is time consuming. To overcome this, in this work, wavelets were evolved with resized, cropped, resized-average and cropped-average images. On comparing the peak- signal-to-noise-ratios (PSNR) offered by the evolved wavelets, it was found that the cropped images excelled the resized images and is in par with the results reported till date. Wavelet lifting coefficients evolved from an average of four 256 256 centre-cropped images took less than 1/5th the evolution time reported in literature. It produced an improvement of 1.009 dB in average PSNR. Improvement in average PSNR was observed for other compression ratios (CR) and degraded images as well. The proposed technique gave better PSNR for various bit rates, with set partitioning in hierarchical trees (SPIHT) coder. These coefficients performed well with other fingerprint databases as well.
Resumo:
This paper explains the Genetic Algorithm (GA) evolution of optimized wavelet that surpass the cdf9/7 wavelet for fingerprint compression and reconstruction. Optimized wavelets have already been evolved in previous works in the literature, but they are highly computationally complex and time consuming. Therefore, in this work, a simple approach is made to reduce the computational complexity of the evolution algorithm. A training image set comprised of three 32x32 size cropped images performed much better than the reported coefficients in literature. An average improvement of 1.0059 dB in PSNR above the classical cdf9/7 wavelet over the 80 fingerprint images was achieved. In addition, the computational speed was increased by 90.18 %. The evolved coefficients for compression ratio (CR) 16:1 yielded better average PSNR for other CRs also. Improvement in average PSNR was experienced for degraded and noisy images as well
Resumo:
Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification
Resumo:
Presently different audio watermarking methods are available; most of them inclined towards copyright protection and copy protection. This is the key motive for the notion to develop a speaker verification scheme that guar- antees non-repudiation services and the thesis is its outcome. The research presented in this thesis scrutinizes the field of audio water- marking and the outcome is a speaker verification scheme that is proficient in addressing issues allied to non-repudiation to a great extent. This work aimed in developing novel audio watermarking schemes utilizing the fun- damental ideas of Fast-Fourier Transform (FFT) or Fast Walsh-Hadamard Transform (FWHT). The Mel-Frequency Cepstral Coefficients (MFCC) the best parametric representation of the acoustic signals along with few other key acoustic characteristics is employed in crafting of new schemes. The au- dio watermark created is entirely dependent to the acoustic features, hence named as FeatureMark and is crucial in this work. In any watermarking scheme, the quality of the extracted watermark de- pends exclusively on the pre-processing action and in this work framing and windowing techniques are involved. The theme non-repudiation provides immense significance in the audio watermarking schemes proposed in this work. Modification of the signal spectrum is achieved in a variety of ways by selecting appropriate FFT/FWHT coefficients and the watermarking schemes were evaluated for imperceptibility, robustness and capacity char- acteristics. The proposed schemes are unequivocally effective in terms of maintaining the sound quality, retrieving the embedded FeatureMark and in terms of the capacity to hold the mark bits. Robust nature of these marking schemes is achieved with the help of syn- chronization codes such as Barker Code with FFT based FeatureMarking scheme and Walsh Code with FWHT based FeatureMarking scheme. An- other important feature associated with this scheme is the employment of an encryption scheme towards the preparation of its FeatureMark that scrambles the signal features that helps to keep the signal features unreve- laed. A comparative study with the existing watermarking schemes and the ex- periments to evaluate imperceptibility, robustness and capacity tests guar- antee that the proposed schemes can be baselined as efficient audio water- marking schemes. The four new digital audio watermarking algorithms in terms of their performance are remarkable thereby opening more opportu- nities for further research.