5 resultados para Exchange rate levels
em Cochin University of Science
Resumo:
We propose a novel, simple, efficient and distribution-free re-sampling technique for developing prediction intervals for returns and volatilities following ARCH/GARCH models. In particular, our key idea is to employ a Box–Jenkins linear representation of an ARCH/GARCH equation and then to adapt a sieve bootstrap procedure to the nonlinear GARCH framework. Our simulation studies indicate that the new re-sampling method provides sharp and well calibrated prediction intervals for both returns and volatilities while reducing computational costs by up to 100 times, compared to other available re-sampling techniques for ARCH/GARCH models. The proposed procedure is illustrated by an application to Yen/U.S. dollar daily exchange rate data.
Resumo:
The present study is an attempt at investigating the intercompartmental exchange of trace metals (copper, cadmium, zinc, lead and nickel) in the Cochin estuary. The nature and extent of distribution in the different compartments with special reference to the transport from environmental compartments to biological compartments have been dealt with in detail. The suitability of the shells of Villorita cyprinoides var cochinensis (Hanely) in pollution monitoring activities has been assessed. A mathematical model (SAAMPLE - Shells in the Assessment of Aquatic Metal Pollution Levels) based on kinetic laws that govern the intercompartmental exchange has been proposed.
Resumo:
Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system
Resumo:
Investigations on the water relations and gas exchange of/tcacia aun'culiji_2rmis were carried out in natural and controlled environments. The experiments were performed in both seedlings and five year old trees. Different sets of experiments were conducted in Acacia plantations, at Kothachira, Palakkad District and in .seedlings, at KFRI campus nursery mainly during the summer months. Investigations were also extended to seedlings of A.mangium, Aaulacocarpa and /Lholocericea, which are also phyllodinous species with the intention of comparing their physiology with Acacia auriculifomus. Potted seedlings of four species of Acacia viz., A. auriculi/E)/7r:i.r, /I. aulacocarpa, A. holocericea and A. mangium were used for the study. Measurements of relative water content (RWC), water potential, photosynthetic rate, transpiration, stomatal conductance, water use efficiency etc. of phyllodes were measured diumally in plants subjected to three stress conditions namely, drought, salinity and flooding
Resumo:
Professor Irma Glicman Adelman, an Irish Economist working in California University at Berkely, in her research work on ‘Development Over Two Centuries’, which is published in the Journal of Evolutionary Economics, 1995, has identified that India, along with China, would be one of the largest economies in this 21st Century. She has stated that the period 1700 - 1820 is the period of Netherlands, the period 1820 - 1890 is the period of England the period 1890 - 2000 is the period of America and this 21st Century is the century of China and India. World Bank has also identified India as one of the leading players of this century after China. India will be third largest economy after USA and China. India will challenge the Global Economic Order in the next 15 years. India will overtake Italian economy in 2015, England economy in 2020, Japan economy in 2025 and USA economy in 2050 (China will overtake Japan economy in 2016 and USA economy in 2027). India has the following advantages compared with other economies. India is 4th largest GDP in the world in terms of Purchasing Power. India is third fastest growing economy in the world after China and Vietnam. Service sector contributes around 57% of GDP. The share of agriculture is around 17% and Manufacture is 16% in 2005 - 2006. This is a character of a developed country. Expected GDP growth rate is 10% shortly (It has come down from 9.2% in 2006 - 2007 to 6.2% during 2008 - 2009 due to recession. It is only a temporary phenomenon). India has $284 billion as Foreign Exchange Reserve as on today. India had just $1 billion as Foreign Exchange Reserve when it opened its economy in the year 1991. In this research paper an attempt has been made to study the two booming economies of the globe with respect to their foreign exchange reserves. This study mainly based on secondary data published by respective governments and various studies done on this area