4 resultados para Evolutionary path-relinking
em Cochin University of Science
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
With the increasing popularity of wireless network and its application, mobile ad-hoc networks (MANETS) emerged recently. MANET topology is highly dynamic in nature and nodes are highly mobile so that the rate of link failure is more in MANET. There is no central control over the nodes and the control is distributed among nodes and they can act as either router or source. MANTEs have been considered as isolated stand-alone network. Node can add or remove at any time and it is not infrastructure dependent. So at any time at any where the network can setup and a trouble free communication is possible. Due to more chances of link failures, collisions and transmission errors in MANET, the maintenance of network became costly. As per the study more frequent link failures became an important aspect of diminishing the performance of the network and also it is not predictable. The main objective of this paper is to study the route instability in AODV protocol and suggest a solution for improvement. This paper proposes a new approach to reduce the route failure by storing the alternate route in the intermediate nodes. In this algorithm intermediate nodes are also involved in the route discovery process. This reduces the route establishment overhead as well as the time to find the reroute when a link failure occurs.
Resumo:
Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties andmolecular structure ofHarriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates