6 resultados para Estrusione, leghe di alluminio, simulazione FEM, microstruttura, Qform

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study deals with structural and spectral investigations of transition metal complexes of di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones. The main objective and scope of the work deals with di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones are quardridentate NNNS donor ligands. To chosen this ligand for study because, the ligands are prepared and characterized for the first time, since there are two pyridyl nitorgens, dimmers and polymers of complexes may result leading to interesting structural aspects. The work includes the preparation of the thiosemicarbzones and their structural and spectral studies, synthesis and spectral characterization of complexes of copper(II),,nickel(II),manganese(II), dioxovanadium(V),cobalt(III),zinc(II),cadmium(II) of the ligand HL, synthesis and spectral characterization of complexes of copper(II),manganese(II), of the ligand HL and the development of X-ray quality crystals and its X-ray diffraction studies. The structural characterization techniques are elemental analysis, conductivity measurements, magnetic measurements, electronic spectroscopy, H NMR spectroscopy, Infrared spectroscopy and X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work deals with the investigations on sthe structural spectral and magnetic interactions of transition metal complexes of multidentate ligands from D1-2-pyridyl ketone and N(4)-Substituted thiosemicarbazides.Thiosemicarbazones are thiourea derivatives with the general formula R2N— C(S)—NH—N=CR2. In the solution state, the thiosemicarbazones exhibit the thionethiol tautomerism similar to the keto-enol tautomerism, and in solution state the thiol form predominates and a deprotonation at the thiolate group in alcoholic medium enhances the coordination abilities ofthe thiosemicarbazones.The magnetochemistry of metal complexes of di-2-pyridyl ketone is a current hot subject of research, which mainly owes to the excellent structural diversity of the complexes ranging from cubanes to clusters, with promising ferromagnetic outputs.Only few efforts were aimed at the magnetochemistry of metal complexes of thiosemicarbazones, and that too were concerned with the complexes of bisttltioscinicarbazones). However, as far as the monothiosemicarbazones are concerned, the magnetochemistry of transition metal complexes of di-2-pyridyl ketone thiosemicarbazones turned up quite unexplored. Consequently, an investigation into it appeared novel and promising to us and that prompted this study, which can be regarded as the initial step towards exploring the magnetochemistry of thiosemicarbazone complexes, especially of di-2-pyridyl ketone derivatives.We could successfully isolate single crystals suitable for X-ray diffraction for the first three ligands. To conclude, we have synthesized some new thiosemicarbazones and their transition metal complexes and studied their structural, spectral and magnetic attributes. Some ofthe complexes revealed interesting stereochemistries and possible bridging characteristics with spectroscopic evidences. Unfortunately, single crystal Xray diffraction studies could not be carried out for many of these interesting compounds due to the lack of availability of suitable quality single crystals. However, the magnetic studies provided support for the proposed stereochemistry giving evidences for their magnetically concentrated nature. The magnetic susceptibilities measured at six different temperatures in the 80-298 K range are fitted into different magnetic equations, which provided an idea about the magnetic behavior of the compounds under study. Some of the copper, oxovanadium, nickel and cobalt complexes are found to possess anomalous magnetic moments, i.e., they revealed no regular gradation with temperature. However, some other copper complexes are observed to be antiferromagnetic, due to super-exchange pathways. The manganese complexes and one of the cobalt complexes are also observed to be antiferromagnetic in nature. However, some nickel complexes have turned up to be ferromagnetic. Accordingly, the versatile stereoehemistry and magnetic behavior of the complexes studied, prompt us to conclude that the transition metal complexes of di-2-pyridyl ketone thiosemicarbazones are promising systems for potential magnetic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five copper(II) complexes [CuLCl]2·CuCl2·4H2O (1), [CuLOAc] (2), [CuLNO3]2 (3), [CuLN3] (4) and [CuLNCS]·3/2H2O (5) of di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL) were synthesized and characterized by elemental analyses and electronic, infrared and EPR spectral techniques. In all these complexes the semicarbazone undergoes deprotonation and coordinates through enolate oxygen, azomethine and pyridyl nitrogen atoms. All the complexes are EPR active due to the presence of an unpaired electron. EPR spectra of all the complexes in DMF at 77K suggest axial symmetry and the presence of half field signals for the complexes 1 and 3 indicates dimeric structures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various polyurethanes containing photoactive bis(azo) and bis(o-nitrobenzyl) groups in the main chain were synthesized by polyaddition reactions of diols such as bis(4-hydroxyphenylazo)-2,20-dinitrodiphenylmethane, 4-hydroxy-3-methylphenylazo- 40-hydroxyphenylazo-2,20-dinitrodiphenylmethane and bis(4-hydroxy-3- methylphenylazo)-2,20-dinitrodiphenylmethane with hexamethylene di-isocyanate (HMDI), in dimethyl acetamide (DMAc) in the presence of di-n-butyltin dilaurate (DBTDL) as catalyst. All of them were characterized by IR, UV-vis, 1H NMR and 13C NMR spectra and also by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six new copper complexes of di-2-pyridyl ketone nicotinoylhydrazone (HDKN) have been synthesized. The complexes have been characterized by a variety of spectroscopic techniques and the structure of [Cu(DKN)2]·H2O has been determined by single crystal X-ray diffraction. The compound [Cu(DKN)2]·H2O crystallized in the monoclinic space group P21 and has a distorted octahedral geometry. The IR spectra revealed the presence of variable modes of chelation for the investigated ligand. The EPR spectra of compounds [Cu2(DKN)2( -N3)2] and [Cu2(DKN)2( -NCS)2] in polycrystalline state suggest a dimeric structure as they exhibited a half field signal, which indicate the presence of a weak interaction between two Cu(II) ions in these complexes