13 resultados para Equatorial
em Cochin University of Science
Resumo:
The aim of the present study is to understand the characteristics and properties of different wave modes and the vertical circulation pattern in the troposphere and lower stratosphere over Indian region using data obtained from the Indian Mesosphere-Stratosphere Troposphere (MST) radar, National Center for Environmental Prediction/National Centres of Atmospheric Research (NCEP/NCAR) reanalysed data and radiosonde observations.Studies on the vertical motion in monsoon Hadley circulation are carried out and the results are discussed . From the analysis of MST radar data, an overall picture of vertical motion of air over Indian region is explained and noted that there exists sinking motion both during winter and summer. Besides, the study shows that there is an anomalous northerly wind in the troposphere over the southern peninsular region during southwest monsoon season.The outcome of the study on intrusion of mid-latitude upper tropospheric trough and associated synoptic-scale vertical velocity over the tropical Indian latitudes are reported and discussed . It shows that there is interaction between north Indian latitudes and tropical easterly region, when there is an eastward movement of Western Disturbance across the country. It explains the strengthening of westerlies and a change of winter westerlies into easterlies in the tropical troposphere and lower stratosphere. The divergence field computed over the MST radar station shows intensification in the downward motion in association with the synoptic systems of the northwest Indian region.
Resumo:
This thesis is an outcome of the studies, carried out by the author on the Equatorial Undercurrent and the Equatorial Jet, an interesting and unique phenomenon discovered, recently, in the Indian Ocean (wyrtxi, 1973). The main objective of the thesis is to carry out a detailed investigation of the seasonal, latitudinal and longitudinal variation of the Equatorial Undercurrent in the Indian Ocean and also the Equatorial Jet, through mapping the vertical distribution of the oceanographic properties across the equator along various longitudes for all the months of an year, between SON and SOS, utilising the oceanographic data collected during the International Indian Ocean Expedition and subsequently in the equatorial Indian Ocean. As the distribution of the hydrographic properties give only a qualitative identification of the Undercurrent, a novel technique of computing the zonal flux through bivariate distribution of salinity and thermosteric anomaly introduced by Montgomery and Stroup (1962), is adopted in order to have a quantitative variation of the Equatorial Undercurrent and the Equatorial Jet. Finally, an attempt is made to give a plausible explanation of the features observed.
Resumo:
In the equatorial oceans, the meridional currents are far less energetic than their zonal counterparts. The response of the Equatorial Indian Ocean to the seasonal reversals in the zonal wind field. is quite interesting and unique. A modest attempt, considering the shortcomings in the hydrographic data availability and distribution, is made to evaluate the variability in the zonal transport of mass. in_ both space and time. The peculiarities in its hydrological regime imposed upon by the seasonally varying winds is best appreciated when compared with the quasi permanent circulation characteristics of the Pacific and Atlanti'c.The major features of the tequatorial mass transport is outlined in the introductory chapter of this thesis for the Pacific and Atlantic Mass transport studies in the Indian Ocean, as can be seen from the earlier studies, gis“ the least known and understood, though could have captured the attention of both the experimentalist and the theoretician alike. owing to its complexity. Since in the Indian Ocean, the studies on the zonal mass transport are limited and are confined to the equator only, an attempt has been made to compute the mass transport extending from 5 N to 20 S.
Resumo:
The study is undertaken with an objective to investigate the linkage between air-sea fluxes in the Indian Ocean and monsoon forcing. Since the monsoon activity is linked to fluxes, the variability of surface marine meteorological fields under the variable monsoon conditions is also studied. The very objective of the present study is to document various sea surface parameters of the Indian Ocean and to examine the anomalies found in them. Hence it is attempted to relate the anomaly to the variability of monsoon over India, highlighting the occasion of contrasting monsoon periods. The analysis of anomalies of surface meteorological fields such as SST, wind speed and direction, sea level pressure and cloud cover for contrasting monsoons are also studied. During good monsoon years, the pressure anomalies are negative indicating a fall in SLP during pre-monsoon and monsoon months. The interaction of the marine atmosphere with tropical Indian Ocean and its influence on ISMR continue to be an area of active research.
Resumo:
Department of Atmospheric Sciences, School of Marine Sciences, Cochin University of Science And Technology
Resumo:
Of the several physical processes occurring in the sea, vertical motions have special significance because of their marked effects on the oceanic environment. upwelling is the process in the sea whereby subsurface layers move up towards the surface. The reverse process of surface water sinking to subsurface depths is called sinking. Upwelling is a very conspicuous feature along the west coasts of continents and equatorial regions, though upwelling also occurs along certain east coasts of continents and other regions, The Thesis is an outcome of some investigations carried out by the author on upwelling and sinking off the west and east coasts of India. The aim of the study is to find out the actual period and duration of upwelling and sinking, their driving mechanism, various associated features and the factors that affect these processes. It is achieved by analysing the temperature and density fields off the west and east coasts of India, and further conclusions are drawn from the divergence field of surface currents, wind stress and sea level variations.
Resumo:
A better understanding of the rainfall climatology of the Middle East region identifying the mechanisms responsible for the rain producing systems is essential for effective utilization of the water resources over the arid region. A comprehensive analysis on the rainfall climatology of the Middle East region is carried out to bring out the spatial and temporal variation of rainfall and mechanisms responsible for the rain events. The study was carried out utilizing rainfall, OLR, wind and humidity data sets procured from TRMM, NOAA and NCEP-NCAR. Climatology of annual rainfall brings out two areas of alarmingly low rainfall in the Middle East region: one in Egypt, Jordan and adjoining areas and the other in the southern part of Saudi Arabia. Daily rainfall analysis indicates that northern region gets rainfall mainly during winter and spring associated with the passage of Mediterranean low pressure systems whereas rain over the southern region is caused mainly by the monsoon organized convection, cross equatorial flow and remnants of low pressure systems associated with the monsoon during the summer season. Thermodynamic structure of the atmosphere reveals that the region does not have frequent local convection due to insufficient moisture content. The sinking motion associated with the sub tropic high pressure system and subsidence associated with the Walker circulation are responsible for maintaining warm and dry air over the region.
Resumo:
According to current knowledge, convection over the tropical oceans increases with sea surface temperature (SST) from 26 to 29 °C, and at SSTs above 29 °C, it sharply decreases. Our research shows that it is only over the summer warm pool areas of Indian and west Pacific Oceans (monsoon areas) where the zone of maximum SST is away from the equator that this kind of SST-convection relationship exists. In these areas (1) convection is related to the SST gradient that generates low-level moisture convergence and upward vertical motion in the atmosphere. This has modelling support. Regions of SST maxima have low SST gradients and therefore feeble convection. (2) Convection initiated by SST gradient produces strong wind fields particularly cross-equatorial low-level jetstreams (LLJs) on the equator-ward side of the warm pool and both the convection and LLJ grow through a positive feedback process. Thus, large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. In the inter-tropical convergence zone (ITCZ) over the east Pacific Ocean and the south Pacific convergence zone (SPCZ) over the west Pacific Ocean, low-level winds from north and south hemisphere converge in the zone of maximum SST, which lies close to the equator producing there elongated bands of deep convection, where we find that convection increases with SST for the full range of SSTs unlike in the warm pool regions. The low-level wind divergence computed using QuikSCAT winds has large and significant linear correlation with convection in both the warm pool and ITCZ/SPCZ areas. But the linear correlation between SST and convection is large only for the ITCZ/SPCZ. These findings have important implications for the modelling of largescale atmospheric circulations and the associated convective rainfall over the tropical oceans
Resumo:
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coe±cient for the di®erent seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coe±cient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (»0.2 m s¡1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s¡1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s¡1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5£10¡7 N m¡3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coe±cient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was con¯rmed via wavelet analysis. In the case of the drag coe±cient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coe±cient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.
Resumo:
The study mainly intends to investigate the meteorological aspects associated with the formation of mud banks along southwest coast of India. During the formation of mud bank, the prominent monsoon organized convection is located in the equatorial region and relatively low clouding over Indian mainland. The wind core of the low level jet stream passes through the monsoon organized convection. When the monsoon organized convection is in the equatorial region, the low level wind over the southwest coast of India is parallel to the coastline and toward south. This wind along the coast gives rise to Ekman mass transport away from the coastline and subsequently formation of mud bank, if the high wind stress persists continuously for three or more days. As a result of the increased alongshore wind stress, the coastal upwelling increases. An increase in chlorophyll-a concentration and total chlorophyll can also be seen associated with mudbank formation
Resumo:
The Tropospheric Biennial Oscillation (TBO), a major interannual variation phenomenon in the Indo-Pacific region, is the result of strong ocean-atmosphere coupling over the Asian-Australian monsoon area. Along with other meteorological and oceanographic parameters, the tropical circulation also exhibits interannual oscillations. Even though the TBO is the result of strong air–sea interaction, the circulation cells during TBO years are, as yet, not well understood. In the present study, an attempt has been made to understand the interannual variability of the mean meridional circulation and local monsoon circulation over south Asia in connection with the TBO. The stream function computed from the zonal mean meridional wind component of NCEP=NCAR reanalysis data for the years 1950–2003 is used to represent the meanmeridional circulation. Mean meridional mass transport in the topics reverses from a weak monsoon to a strong monsoon in the presence of ENSO, but in normal TBO yearsmean transport remains weak across the Northern Hemisphere. The meridional temperature gradient, which drives the mean meridional circulation, also shows no reversal during the normal TBO cycle. The local Hadley circulation over the monsoon area follows the TBO cycle with anomalous ascent (descent) in strong (weak) monsoon years. During normal TBO years, the Equatorial region and Indian monsoon areas exhibit opposite local Hadley circulation anomalies