16 resultados para Environmentally-friendly
em Cochin University of Science
Zeolite Encapsulated Complexes Of Fe,Co,Ni,Cu And Pd:Synthesis , Characterization And Catalysis-2003
Resumo:
This thesis deals with the synthesis, characterization and catalysis activity studies of some zeolite encapsulated complexes. Encapsulation inside the zeolite cages makes the catalysts more stable. Further, the framework prevents the complexes from dimerising. Catalysis by metal complexes encapsulated in the cavities of zeolites and other molecular sieves has many features of homogeneous, heterogenous and enzymatic catalysis. Serious attempts has been made to gain product selectivity in catalysis .The catalytic activity shown by the encapsulated complexes can be correlated to the structure of the active site inside the zeolite pore. It deals with the studies on the partial oxidation of benzyl alcohol to benzaldehyde. The oxidatio was carried out using hydrogen peroxide as oxidant in presence of PdYDMG and CuYSPP as catalysts. The product (benzaldehyde) was detected using TLC and confirmed using GC.The catalytic activity of the complexes was tested for oxidation under various conditions. The operating conditions like the amount of the catalyst, reaction time, oxidant to substrate ratio, reaction temprature, and solvents have been optimized. No further oxidation products were obtained on continuing the reaction for four hours beyond the optimum time. Maximum conversion was obtained at room temperature and the percentage conversion decreased with increase in temperature. Activity was found to be dependent on the solvent used. With increasing awareness about the dangers of environmental degradation, research in chemistry is getting increasing geared to the development of “green chemistry,” by designing environmentally friendly products and processes that bring down the generation and use of hazardous substances.
Resumo:
In the present studies it is clear that Bacillus pumilus xylanase is having the characteristic suited for an industrial enzyme (xylanases that are active and stable at elevated temperatures and alkaline pH are needed). SSF production of xylanases and its application appears to be an innovative technology where the fermented substrate is the enzyme source that is used directly in the bleaching process without a prior downstream processing. The direct use of SSF enzymes in bleaching is a relatively new biobleaching approach. This can certainly benefit the bleaching process to lower the xylanase production costs and improve the economics and viability of the biobleaching technology. The application of enzymes to the bleaching process has been considered as an environmentally friendly approach that can reduce the negative impact on the environment exerted by the use of chlorine-based bleaching agents. It has been demonstrated that pretreatment of kraft pulp with xylanase prior to bleaching (biobleaching) can facilitate subsequent removal of lignin by bleaching chemicals, thereby, reducing the demand for elemental chlorine or improving final paper brightness. Using this xylanase pre-treatment, has resulted in an increased of brightness (8.5 Unit) when compared to non-enzymatic treated bleached pulp prepared using identical conditions. Reduction of the consumption of active chlorine can be achieved which results in a decrease in the toxicity, colour, chloride and absorbable organic halogen (AOX) levels of bleaching effluents. The xylanase treatment improves drainage, strength properties and the fragility of pulps, and also increases the brightness of pulps. This positive result shows that enzyme pre-treatment facilitates the removal of chromophore fragments of pulp there by making the process more environment friendly
Resumo:
Dimethylacetals of ketones; cyclohexanone, acetophenone, and benzophenone have been prepared by reacting ketones with methanol under mild reaction conditions. Large pore zeolites (H-Y and its rare earth metal, Ce3+, La3+, and RE3+ modified forms), and mesoporous clay (K-10 montmorillonite and its cerium exchanged counterpart) with regular pore structure, silica and silica-alumina have been used as catalysts. Clay catalysts are found to be much more active than zeolites, thanks to slightly bigger pore size. The nature of the pores of the solid acid catalysts determine acetalization efficiency of a particular catalyst. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolites than over the clays. Carrying out the reaction with ketones of different molecular sizes it is shown that K-10 clays and rare earth exchanged H-Y zeolites are promising environmentally friendly catalysts for their use in the production fine chemicals.
Resumo:
The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.
Resumo:
Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.
Resumo:
Instead of developing easily degradable, and low-priced insecticides, we are going after highly sophisticated chemicals. Here, an attempt is being made to develop safer formulations of insecticides of botanical origin. Different parts of the plants were chosen based on their use in countryside and villages The dried plant materials were extracted with petroleum ether, and were applied on Tribolium castaneum. The results were statistically analysed. The active principles from Croton tigilium and Leea sambucina, the most potential plants, were isolated using Column Chromatography, TLC, and Hydrolysis. The isolated principles were analysed spectroscopically ( UV-Vis., IR, NMR, and MS ) to identify their chemical nature. The active principles from Leea and Croton were identified as a cholisterate derivative and a phorbol derivative respectively. In order to ascertain the environmental combatibility of the principles, degradation by soil bacteria was studied. The isolated principles were made into three type of formulations using stabilizers .The formulations were applied on Snake gourd semilooper, Pulse beetle, and mosquito larvae. Also the biocidal activity of the formulations was studied. Both Leea derivative and Croton derivative could be formulated effectively and were effective against a variety of pests. They are eco-friendly, as there is no artificial chemicals involved.
Resumo:
The School of Management Studies, CUSAT
Resumo:
Green chemistry boots eco-friendly,natural clays as catalysts in the chemical as well as in the pharmaceutical industry.Industry demands thermal stability,mechanical strength etc for the catalyst and there the modification methods becomes important.Pillaring tunes clays as efficient catalytic templates for shape selective organic synthesis.Here pillared clays are used as promising alternatives for the environmentally hazardous homogeneous catalysts in some industrially important Friedel-Crafts alkylation reactions of arenes with lower alchohols and higher olefins.The layer structure is enhanced upon pillaring and allows the nanocomposite formation with polyaniline to develop today’s nanoscale diameter devices.Present work gives an entry of pillared clays to the world of conducting composite nanofibers.
Resumo:
The present study has identified an actinomycete culture (S. psammoticus) which was capable of producing all the three major ligninolytic enzymes. The study revealed that least explored mangrove regions are potential sources for the isolation of actinomycetes with novel characteristics. The laccase production by the strain in SmF and SSF was found to be much higher than the reported values. The growth of the organism was favoured by alkaline pH and salinity of the medium. The enzyme also exhibited novel characteristics such as activity and stability at alkaline pH and salt tolerance. These two characters are quite significant from the industrial point of view making the enzyme an ideal candidate for industrial applications. Many of the application studies to date are focused on enzymes from fungal sources. However, the fungal laccases, which are mostly acidic in nature, could not be used universally for all application purposes especially, for the treatment of effluents from different industries, largely due to the alkaline nature of the effluents. Under such situations the enzymes from organisms like S. psammoticus with wide pH range could play a better role than the fungal counterparts. In the present study, the ability of the isolated strain and laccase in the degradation of dyes and phenolic compounds was successfully proved. The reusability of the immobilized enzyme system made the entire treatment process inexpensive. Thus it can be concluded from the present study that the laccase from this organism could be hopefully employed for the eco-friendly treatment of dye or phenol containing industrial effluents from various sources.
Resumo:
Industrial pollutants, consisting of heavy metals, petroleum residues, petrochemicals, and a wide spectrum of pesticides, enter the marine environment on a massive scale and pose a very serious threat to all forms of aquatic life. Although, earlier, efforts were directed towards the identification of pollutants and their major sources, because of a growing apprehension about the potential harm that pesticides can inflict upon various aquatic fauna and flora, research on fundamental and applied aspects of pesticides in the aquatic environment has mushroomed to a point where it has become difficult to even keep track of the current advances and developments. The Cochin Estuarine System (CES), adjoining the Greater Cochin area, receives considerable amounts of domestic sewage, urban wastes, agricultural runoff as well as effluent from the industrial units spread all along its shores. Since preliminary investigations revealed that the most prominent of organic pollutants discharged to these estuarine waters were the pesticides, the present study was designed to analyse the temporal and spatial distribution profile of some of the more toxic, persistent pesticides ——— organochlorines such as DDT and their metabolites; HCH-isomers; a cyclodiene compound," Endosulfan and a widely distributed, easily degradable, organophosphorus compound, Malathion, besides investigating their sorptional and toxicological characteristics. Although, there were indications of widespread contamination of various regions of the CBS with DDT, HCH-isomers etc., due to inadequacies of the monitoring programmes and due to a glaring void of baseline data the causative factors could not identified authentically. Therefore, seasonal and spatial distributions of some of the more commonly used pesticides in the CES were monitored systematically, (employing Gas Chromatographic techniques) and the results are analysed.
Resumo:
In the last decades considerable headway has been made in research and development of phyto-chemical pesticides. The most notable recent success is the commercial development of neem products for insect control. The present investigation on Environmentally Compatible Phyto-Chemical Larvicides for Mosquito Control was undertaken to identify plants of the locality with potential larvicidal activity on mosquito larvae. This has been achieved by screening 17 plant species against four mosquito species. The observation and data are compiled in six chapters .
Resumo:
The base concept from which the entire research problem emerged is as follows: Lack of spatial planning and effective development management system lead to urban sprawl with non-optimal density of population to support urban infrastructure on the one side causing a lesser quality of life in urban areas. On the other side it causes loss of productivity of natural ecosystems and agricultural areas due to disturbance to the ecosystems. Planned compact high density development with compatible mixed land use can go a long way in achieving environmental efficiency of development management system.
Resumo:
This paper discusses the implementation details of a child friendly, good quality, English text-to-speech (TTS) system that is phoneme-based, concatenative, easy to set up and use with little memory. Direct waveform concatenation and linear prediction coding (LPC) are used. Most existing TTS systems are unit-selection based, which use standard speech databases available in neutral adult voices.Here reduced memory is achieved by the concatenation of phonemes and by replacing phonetic wave files with their LPC coefficients. Linguistic analysis was used to reduce the algorithmic complexity instead of signal processing techniques. Sufficient degree of customization and generalization catering to the needs of the child user had been included through the provision for vocabulary and voice selection to suit the requisites of the child. Prosody had also been incorporated. This inexpensive TTS systemwas implemented inMATLAB, with the synthesis presented by means of a graphical user interface (GUI), thus making it child friendly. This can be used not only as an interesting language learning aid for the normal child but it also serves as a speech aid to the vocally disabled child. The quality of the synthesized speech was evaluated using the mean opinion score (MOS).
Resumo:
This paper describes certain findings of intonation and intensity study of emotive speech with the minimal use of signal processing algorithms. This study was based on six basic emotions and the neutral, elicited from 1660 English utterances obtained from the speech recordings of six Indian women. The correctness of the emotional content was verified through perceptual listening tests. Marked similarity was noted among pitch contours of like-worded, positive valence emotions, though no such similarity was observed among the four negative valence emotional expressions. The intensity patterns were also studied. The results of the study were validated using arbitrary television recordings for four emotions. The findings are useful to technical researchers, social psychologists and to the common man interested in the dynamics of vocal expression of emotions
Resumo:
From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.