4 resultados para Engineer
em Cochin University of Science
Resumo:
Indian marine engineers are renowned for employment globally due to their knowledge, skill and reliability. This praiseworthy status has been achieved mainly due to the systematic training imparted to marine engineering cadets. However, in an era of advancing technology, marine engineering training has to remain dynamic to imbibe latest technology as well as to meet the demands of the shipping industry. New subjects of studies have to be included in the curriculum in a timely manner taking into consideration the industry requirements and best practices in shipping. Technical competence of marine engineers also has to be subjected to changes depending upon the needs of the ever growing and over regulated shipping industry. Besides. certain soft skills are to be developed and improved amongst the marine engineers in order to alter or amend the personality traits leading to their career success.If timely corrective action is taken. Indian marine engineers can be in still greater demand for employment in global maritime field. In order to enhance the employability of our mmine engineers by improving their quality, a study of marine engineers in general and class IV marine engineers in particular was conducted based on three distinct surveys, viz., survey among senior marine engineers, survey among employers of marine engineers and survey of class IV marine engineers themselves.The surveys have been planned and questionnaires have been designed to focus the study of marine engineer officer class IV from the point of view of the three distinct groups of maritime personnels. As a result of this, the strength and weakness of class IV marine engineers are identified with regard to their performance on board ships, acquisition of necessary technical skills. employability and career success. The criteria of essential qualities of a marine engineer are classified as academic, technical, social, psychological. physical, mental, emergency responsive, communicative and leadership, and have been assessed for a practicing marine engineer by statistical analysis of data collected from surveys. These are assessed for class IV marine engineers from the point of view of senior marine engineers and employers separately. The Endings are delineated and graphically depicted in this thesis.Besides. six pertinent personality traits of a marine engineer viz. self esteem. learning style. decision making. motivation. team work and listening self inventory have been subjected to study and their correlation with career success have been established wherever possible. This is carried out to develop a theoretical framework to understand what leads a marine engineer to his career attainment. This enables the author to estimate the personality strengths and weaknesses of a serving marine engineer and eventually to deduce possible corrective measures or modifications in marine engineering training in India.Maritime training is largely based on International Conventions on Standard of Training. Certification and Watch keeping for Seafarers 1995. its associated Code and Merchant Shipping (STCW for Seafarers) Rules 1998. Further, Maritime Education, Training and Assessment (META) Manual was subjected to a critical scrutiny and relevant Endings of thc surveys arc superimposed on the existing rule requirement and curriculum. Views of senior marine engineers and executives of various shipping companies are taken into account before arriving at the revision of syllabus of marine engineering courses. Modifications in the pattern of workshop and sea service for graduate mechanical engineering trainees are recommended. Desirable age brackets of junior engineers and chief engineers. use of Training and Assessment Record book (TAR Book) during training etc. have also been evaluated.As a result of the pedagogic introspection of the existing system of marine engineering training in India. in this thesis, a revised pattern of workshop training of six months duration for graduate mechanical engineers. revised pattern of sea service training of one year duration and modified now diagram incorporating the above have been arrived at. Effects of various personality traits on career success have been established along with certain findings for improvement of desirable personality traits of marine engineers.
Resumo:
Chapter 1 presents a brief note on the state at which the construction industry stands at present, bringing into focus the significance of the critical study. Relevance of the study, area of investigation and objectives of the study are outlined in this chapter. The 2nd chapter presents a review of the literature on the relevant areas. In the third chapter an analysis on time and cost overrun in construction highlighting the major factors responsible for it has been done. A couple of case studies to estimate loss to the nation on account of delay in construction have been presented in the chapter. The need for an appropriate estimate and a competent contractor has been emphasised for improving effectiveness in the project implementation. Certain useful equations and thoughts have been formulated on this area in this chapter that can be followed in State PWD and other Govt. organisations. Case studies on project implementation of major projects undertaken by Government sponsored/supported organizations in Kerala have been dealt with in Chapter 4. A detailed description of the project of Kerala Legislature Complex with a critical analysis has been given in this chapter. A detailed account of the investigations carried out on the construction of International Stadium, a sports project of Greater Cochin Development Authority is included here. The project details of Cochin International Airport at Nedumbassery, its promoters and contractors are also discussed in Chapter 4. Various aspects of implementation which led the above projects successful have been discussed in chapter 5. The data collected were analysed through discussion and perceptions to arrive at certain conclusions. The emergence of front-loaded contract and its impact on economics of the project execution are dealt with in this chapter. Analysis of delays in respect of the various project narrated in chapter 3 has been done here. The root causes of the project time and overrun and its remedial measures are also enlisted in this chapter. Study of cost and time overrun of any construction project IS a part of construction management. Under the present environment of heavy investment on construction activities in India, the consequences of mismanagement many a time lead to excessive expenditure which are not be avoidable. Cost consciousness, therefore has to be keener than ever before. Optimization in investment can be achieved by improved dynamism in construction management. The successful completion of coristruction projects within the specified programme, optimizing three major attributes of the process - quality, schedule and costs - has become the most valuable and challenging task for the engineer - managers to perform. So, the various aspects of construction management such as cost control, schedule control, quality assurance, management techniques etc. have also been discussed in this fifth chapter. Chapter 6 summarises the conclusions drawn from the above criticalr1 of rhajor construction projects in Kerala.
Resumo:
The demand for new telecommunication services requiring higher capacities, data rates and different operating modes have motivated the development of new generation multi-standard wireless transceivers. A multi-standard design often involves extensive system level analysis and architectural partitioning, typically requiring extensive calculations. In this research, a decimation filter design tool for wireless communication standards consisting of GSM, WCDMA, WLANa, WLANb, WLANg and WiMAX is developed in MATLAB® using GUIDE environment for visual analysis. The user can select a required wireless communication standard, and obtain the corresponding multistage decimation filter implementation using this toolbox. The toolbox helps the user or design engineer to perform a quick design and analysis of decimation filter for multiple standards without doing extensive calculation of the underlying methods.
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping