3 resultados para Energy splitting

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method of preparation of strontium sulphide phosphors doped with europium is given. Nitrogen laser excited fluorescence emission spectra of these phosphors in the visible region are recorded. A band with line structure in the region 350-430 nm and a new broad band at 460 nm are observed. The splitting pattern for the 6p levels of Eu 2+ are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540–660nm superposed by the characteristic Sm3+ lines. Energy level splitting pattern of Sm3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm3+ takes up Ba2+ substitutional sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.