6 resultados para Energy Saving
em Cochin University of Science
Resumo:
Although the physical and technological properties of modified rubbers were compared with those of conventional rubbers in the earlier studies reviewed above, the extent of energy saving possible by their use has not been quantified. In the present work it is proposed to determine the energy saving possible by using the following forms of natural rubber: 1. Oil extended natural rubber, 2. peptised natural rubber, 3. latex stage compounds. The process of production and quality control of the above types of processed rubbers are proposed to be standardised. It is also planned to work out a methodology for utilising field coagula for production of constant viscosity rubbers. The variation in processing properties of rubber from popular Indian clones will be examined and those with energy advantages in the processing stage will be identified. In conclusion a recommendation for adoption of a commercially advantageous processing procedure among Indian rubber plantation industry is also given.
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue for sensor networks since most sensors are equipped with non-rechargeable batteries that have limitedlifetime. Routing schemes are used to transfer data collectedby sensor nodes to base stations. In the literature many routing protocols for wireless sensor networks are suggested. In this work, four routing protocols for wireless sensor networks viz Flooding, Gossiping, GBR and LEACH have been simulated using TinyOS and their power consumption is studied using PowerTOSSIM. A realization of these protocols has beencarried out using Mica2 Motes.
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue forfor sensor networks since most sensors are equipped with non-rechargeable batteries that have limited lifetime.
Resumo:
Sensor networks are one of the fastest growing areas in broadwireless ad hoc networking (?Eld. A sensor node, typically'contains signal-processing circuits, micro-controllers and awireless transmitter/receiver antenna. Energy saving is oneof the critical issue for sensor networks since most sensorsare equipped with non-rechargeable batteries that have limited lifetime.In thiswork, four routing protocols for wireless sensor networks vizFlooding, Gossiping, GBR and LEACH have been simulated using Tiny OS and their power consumption is studied usingcaorwreiredTOoSuStIuMs.ingAMirceaal2izMaotitoens.of these protocols has been carried out using mica 2 motes
Resumo:
Research in the fields of ceramic pigments is oriented towards the enlargement of the chromatic set of colors together with a replacement for more expensive and less stable organic pigments. Novel non-toxic inorganic pigments have been required to answer environmental laws to remove elements like lead, chromium, cobalt entering in the composition of usual pigments widely used in paints and plastics. Yellow is particularly an important color in the pigment industry and consumption of yellow exceeds that of any other colored pigments. Apart from this, high infrared reflective pigments are now in great demand for usage in coatings, cement pavements, automotives and camouflage applications. They not only impart color to an object, but also reflect the invisible heat from the object to minimize heat build–up, when exposed to solar radiation. With this in view, the present work aims at developing new functional yellow pigments for these applications. A series of IR reflecting yellow pigments have been synthesized and analyzed for their crystalline structure, morphological, composition and optical characteristics, coloring and energy saving applications