19 resultados para Electron Transfer Reactions
em Cochin University of Science
Resumo:
Cochin University of Science & Technology
Resumo:
the thesis entitled “Ground and Excited State Electron Transfer Reaction Between a few Anthracene Appended Tertiary Amines and Suitable Electron Acceptors” portrays our attempts to explore the solvent, concentration and temperature effect of the reaction between a few (anthracen-9- yl)methanamines with electron acceptors like DMAD, DBA and DBE. We have also studied the effect of solvent and percentage fluorescence quenching in the photoinduced electron transfer reactions of these ‘donor-spacer-acceptor’ systems. Finally we look in to the intramolecular electron transfer reactions of a few tertiary amine appended dibenzobarrelenes and bisdibenzobarrelenes
Resumo:
The thesis entitled ‘Studies on the Solvent Dependence in the Reaction of a Few (Anthracen-9-yl)methylamines and Sulfanes with Reactive Acetylenes’ is divided into six chapters. ln Chapter l a general survey of electron transfer reactions, Diels-Alder reactions and Michael-type additions is presented. A detailed discussion on the synthesis of several (anthracen-9-yl)methylamines is presented in Chapter 2. In Chapter 3, results of preliminary photophysical studies on a few (anthracen-9yl) methylamines are compiled. A detailed discussion on extensive examination of dependence in the reaction of (anthracen-9-yl)methylamines with reactive acetylenes is presented Chapter 4. Details on the synthesis and reaction of a few (anthracen-9-yl)methylsulfanes with DMAD are described in Chapter 5.
Resumo:
Nitrones or azomethine-N-oxides are important precursors for the synthesis of several heterocyclic systems. They belong to the allyl anion type 1,3-dipoles and possess unique structural features which make them extraordinarily useful synthons. They behave as 1,3-dipoles in 1,3-dipolar cycloaddition reactions and as electrophiles in reactions with organometallic reagents. These are the two basic reactions given by nitrones. Nitrones also act as ‘spin traps’ in which they react with short-lived radicals to furnish stable nitroxide radicals which can be detected and identified by electron paramagnetic resonance (EPR) spectroscopy. Recently SmI2 catalysed reductive cross-coupling reactions of nitrones have gained significant interest in which the reactions are initiated by single electron transfer (SET) to nitrones. Apart from these reactions, nitrones are also known to participate in reactions which are initiated by the nucleophilic attack of nitrone-oxygen. In our group, we have also explored the nucleophilic character of nitrones through various reactions. The results obtained enabled us to develop a novel two-step one-pot strategy for quinolines and indoles - the heterocycles renowned for their pharmacological applications, from nitrones and electron deficient acetylenes. Using dibenzoylacetylene and phenylbenzoylacetylene as dipolarophiles, we could introduce a desired functional group at a predetermined position of the quinolines or indoles to be synthesised. In this context, the thesis entitled “NUCLEOPHILIC ADDITION OF NITRONES TO ELECTRON DEFICIENT ACETYLENES AND RELATED STUDIES” portrays our attempt to expand the scope of our x novel synthetic protocol using ester functionalised acetylenes: dimethyl acetylenedicarboxylate (DMAD) and methyl propiolate. The thesis is organised in to five chapters. The first chapter briefly describes the different classes of reactions that nitrone functionality can tolerate. The research problem is defined at the end of this chapter. The second chapter describes the synthesis of different nitrones used for the present study. The optimisation and expansion of scope of the novel strategy towards quinoline synthesis is discussed in the third chapter. The fourth chapter portrays the synthesis of indole-3-carboxylates using the novel strategy. In the fifth chapter, the reaction of N-(2,6-dimethylphenyl) and N-(2,4,6-trimethylphenyl)nitrones are discussed. Here we also discuss the mechanistic reinvestigation of Baldwin’s proposal in the isoxazoline-oxazoline rearrangement. The major outcome of the work is given at the end of the thesis. The structural formulae, schemes, tables and figures are numbered chapter-wise since each chapter of the thesis is organized as an independent unit. All new compounds (except two compounds reported in fourth chapter) are fully characterised on the basis of spectral and analytical data and single crystal X-ray analysis on representative examples. Relevant references are included at the end of individual chapters.
Resumo:
The electron donating properties of La2O3 activated at 300, 500 and 800·C and its mixed oxides with alumina are reported from the studies on adsorption of electron acceptors of varying electron affinity on La203. The electron acceptors with their electron affinity values given in parenthesis are: 7,7,8,8-tetracyanoquinodimethane (2.84 eV), 2,3,5,6-tetrachloro-I,4-benzoquinone (2.40 eV) and p-dinitrobenzene(l.77eV). The basicity of the oxide has been determined by titration with n-butylamine and Ho.max values are reported. The limit of electron transfer from the oxide to the electron acceptor is between 2.40 and 1.77 eV. It is observed that La203 promotes the surface electron properties of alumina without changing its limit of electron transfer.
Resumo:
The electron donor properties of Nd2O3 activated at 300, 500 and 800°C were investigated through studies on the adsorption of electron acceptors of various electron affinities - 7, 7, 8,8-tetracyanoquinodimethane (2.84 eV). 2, 3, 5, 6-tetrachloro-l , 4-benzoquinone (2.40 eV). p-dinitrobenzene (1.77 eV), and m-dinitrobenzene (1.26 eV) in solvents acetonitrile and 1, 4-dioxan. The extent of electron transfer during adsorption has been found from magnetic measurements and electronic spectral data. The corresponding data on mixed oxides of neodymium and aluminium are reported for various. compositions. The acid-base properties of catalysts were also determined using a set of Hammett indicators.
Resumo:
The limit of electron transfer in electron affinity from the oxide surface to the electron acceptor (EA) are reported from the adsorption of EA on DY203, mixed oxides of DY203 with alumina and mixed oxides of Y203 with y-alumina. The extent of electron transfer is understood from magnetic measurements.
Resumo:
The electron-donor properties of Sm2O3 activated at 300, 500, and 800°C are reported from studies on the adsorption of electron acceptors of various electron affinities (electron affinity values in eV are given in parentheses): 7,7,8,8-tetracyanoquino-dimethane (2.84), 2,3,5,6-tetrachloro-1,4-benzoquinone (2.40), p-dinitrobenzene (1.77), and m-dinitrobenzene (1.26) in acetonitrile and 1,4-dioxane. The extent of electron transfer during the adsorption was determined from magnetic measurements. The acid-base properties of Sm2O3 at different activation temperatures are reported using a set of Hammett indicators. Electron donor-acceptor interactions at interfaces are important in elucidating the adhesion forces.