7 resultados para Electromyogram signal (EMG)

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A forward - biased point contact germanium signal diode placed inside a waveguide section along the E -vector is found to introduce significant phase shift of microwave signals . The usefulness of the arrangement as a phase modulator for microwave carriers is demonstrated. While there is a less significant amplitude modulation accompanying phase modulation , the insertion losses are found to be negligible. The observations can be explained on the basis of the capacitance variation of the barrier layer with forward current in the diode

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal lens signals in solutions of rhodamine B laser dye in methanol are measured using the dual beam pump-probe technique. The nature of variations of signal strength with concentration is found to be different for 514 and 488 nm Ar + laser excitations. However, both the pump wavelengths produce an oscillatory type variation of thermal lens signal amplitude with the concentration of the dye solution. Probable reasons for this peculiar behaviour (which is absent in the case of fluorescent intensity) are mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed photoacoustic studies in solutions of C70 in toluene are made using the 532-nm radiation from a frequency-doubled Nd:YAG laser. It is found that contrary to expectation, there is no photoacoustic (PA) signal enhancement in the power-limiting range of laser fluences. Instead, the PA signal tends to saturate during optical power-limiting phenomenon. This could be due to the enhanced optical absorption from the photoexcited state and hence the depletion of the ground-state population. PA measurements also ruled out the possibility of multiphoton absorption in the C70 solution. We demonstrate that the nonlinear absorption leading to optical limiting is mainly due to reverse saturable absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine tool chatter is an unfavorable phenomenon during metal cutting, which results in heavy vibration of cutting tool. With increase in depth of cut, the cutting regime changes from chatter-free cutting to one with chatter. In this paper, we propose the use of permutation entropy (PE), a conceptually simple and computationally fast measurement to detect the onset of chatter from the time series using sound signal recorded with a unidirectional microphone. PE can efficiently distinguish the regular and complex nature of any signal and extract information about the dynamics of the process by indicating sudden change in its value. Under situations where the data sets are huge and there is no time for preprocessing and fine-tuning, PE can effectively detect dynamical changes of the system. This makes PE an ideal choice for online detection of chatter, which is not possible with other conventional nonlinear methods. In the present study, the variation of PE under two cutting conditions is analyzed. Abrupt variation in the value of PE with increase in depth of cut indicates the onset of chatter vibrations. The results are verified using frequency spectra of the signals and the nonlinear measure, normalized coarse-grained information rate (NCIR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool.