7 resultados para Electric space charge

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dielectric properties of vacuum-deposited europium oxide films have been investigated in the frequency range from 1 kHz to 1 MHz at various temperatures (300-543 K). The dielectric constant is found to depend on film thickness and it attains a constant value beyond 1000 Å. Films deposited at higher substrate temperatures (above 423 K) exhibit improved dielectric properties owing to the recovery of stoichiometry. The frequency variation of the loss factor exhibits a minimum which increases with rise in temperature. The breakdown field strength (about 106V cm-1) is found to be thickness dependent and it varies in accordance with the Forlani-Minnaja relation. The films exhibit ohmic conduction with an activation energy of 0.86 eV at low electric fields but at higher fields the conductivity becomes space charge limited. X-ray studies show that the films are amorphous in nature. The a.c. conductivity is proportional to ω at low frequency, whereas a square law dependence is observed at higher frequencies. The optical constants n, α and k and optical band gap are calculated from the UV-visible-near-IR spectra.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The carrier transport mechanism of polyaniline (PA) thin films prepared by radio frequency plasma polymerization is described in this paper. The mechanism of electrical conduction and carrier mobility of PA thin films for different temperatures were examined using the aluminium–PA–aluminium (Al–PA–Al) structure. It is found that the mechanism of carrier transport in these thin films is space charge limited conduction. J –V studies on an asymmetric electrode configuration using indium tin oxide (ITO) as the base electrode and Al as the upper electrode (ITO–PA–Al structure) show a diode-like behaviour with a considerable rectification ratio

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transient interaction between a refraction index grating and light beams during simultaneous writing and thermal fixing of a photorefractive hologram is investigated. With a diffusion- and photovoltaic-dominated carrier transport mechanism and carrier thermal activation (temperature dependent) considered in Fe:LiNbO3 crystal, from the standpoint of field-material coupling, the theoretical thermal fixing time and the space-charge field buildup, spatial distribution, and temperature dependence are given numerically by combining the band transport model with mobile ions with the coupled-wave equation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma polymerization is found to be an excellent technique for the preparation of good quality, pinhole-free, polymer thin films from different monomer precursors. The present work describes the preparation and characterization of polypyrrole (PPy) thin films by ac plasma polymerization technique in their pristine and in situ iodine doped forms. The electrical conductivity studies of the aluminiumpolymeraluminium (AlpolymerAl) structures have been carried out and a space charge limited conduction (SCLC) mechanism is identified as the most probable mechanism of carrier transport in these polymer films. The electrical conductivity shows an enhanced value in the iodine doped sample. The reduction of optical band gap by iodine doping is correlated with the observed conductivity results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis aims to present the results of the experimental investigations on the electrical properties like electrical conductivity, dielectric constant and ionic thermo~ currents in certain ammonium containing ferroelectric crystals viz. LiNH4SO4, (NH4)2SO4 and (NH4)5H(SO4)2. Special attention has been paid in revealing the mechanisms of electrical conduction in the various phases of these crystals and those asso~ ciated with the different phase transitions occurring in them, by making studies on doped, quenched and deuterated crystals. The report on the observation of two new phase transitions in (NH4) S O2 and of a similar one in ( NH4 ) H (2SO4 ) are included. The relaxation mechanisms of the impurity-vacancy complexes and the space charge phenomena in pure and doped crystals of LiNH4SO4 and (NH4)2SO4 and the observation of a new type of ionic thermo-current viz. Protonic Thermo-Current (PTC) in these crystals are also presented here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrically conductive organic and metalloorganic polymers are of great interest and they have applications in electronic, optical, photonic, photoelectric, electrochemical, and dielectric devices. Tetrameric cobalt phthalocyanine was prepared by conventional chemical method. The dielectric permittivity of the tetrameric cobalt phthalocyanine sample was evaluated from the observed capacitance values in the frequency range 100 KHz to 5 MHz and in the temperature range of 300 to 383°K. It is found that the system obeys the Maxwell Wagner relaxation of space charge phenomenon. Further, from the permittivity studies AC conductivity was evaluated. The values of AC conductivity and DC conductivity were compared. Activation energy was calculated. To understand the conduction mechanism Mott’s variable range hopping model was applied to the system. The T 1/4 behavior of the DC conductivity along with the values of Mott’s Temperature (T0), density of states at the Fermi energy N (EF), and range of hopping R and hopping energy W indicate that the transport of charge carriers are by three-dimensional variable range hopping

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.