6 resultados para Electric power systems -- Quality control

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of computer vision based quality control has been slowly but steadily gaining importance mainly due to its speed in achieving results and also greatly due to its non- destnictive nature of testing. Besides, in food applications it also does not contribute to contamination. However, computer vision applications in quality control needs the application of an appropriate software for image analysis. Eventhough computer vision based quality control has several advantages, its application has limitations as to the type of work to be done, particularly so in the food industries. Selective applications, however, can be highly advantageous and very accurate.Computer vision based image analysis could be used in morphometric measurements of fish with the same accuracy as the existing conventional method. The method is non-destructive and non-contaminating thus providing anadvantage in seafood processing.The images could be stored in archives and retrieved at anytime to carry out morphometric studies for biologists.Computer vision and subsequent image analysis could be used in measurements of various food products to assess uniformity of size. One product namely cutlet and product ingredients namely coating materials such as bread crumbs and rava were selected for the study. Computer vision based image analysis was used in the measurements of length, width and area of cutlets. Also the width of coating materials like bread crumbs was measured.Computer imaging and subsequent image analysis can be very effectively used in quality evaluations of product ingredients in food processing. Measurement of width of coating materials could establish uniformity of particles or the lack of it. The application of image analysis in bacteriological work was also done

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been said that market itself is the ideal regulator of all evils that may come up among traders. Free and fair competition among manufacturers in the market will adequately ensure a fair dealing to the consumers. However, these are pious hopes. that markets anywhere in the world could not accomplish so far. Consumers are being sought to be lured by advertisements issued by manufacturers and sellers that are found often false and misleading. Untrue statements and claims about quality and performance of the products virtually deceive them. The plight of the consumers remains as an unheard cry in the wildemess. In this sorry state of affairs, it is quite natural that the consumers look to the governments for a helping hand. It is seen that the governmental endeavours to ensure quality in goods are diversified. Different tools are formulated and put to use, depending upon the requirements necessitated by the facts and circumstances. This thesis is an enquiry into these measures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality related problems have become dominant in the seafood processing industry in Kerala. This has resulted in the rejection of seafood sent from India to many destinations. The latest being the total block listing of seafood companies from India from being exported to Europe and partial block listing by the US. The quality systems prevailed in the seafood industry in India were outdated and no longer in use in the developed world. According to EC Directive discussed above all the seafood factories exporting to European countries have to adopt HACCP. Based on this, EIA has now made HACCP system mandatory in all the seafood processing factories in India. This transformation from a traditional product based inspection system to a process control system requires thorough changes in the various stages of production and quality management. This study is conducted by the author with to study the status of the existing infrastructure and quality control system in the seafood industry in Kerala with reference to the recent developments in the quality concepts in international markets and study the drawbacks, if any, of the existing quality management systems in force in the seafood factories in Kerala for introducing the mandatory HACCP concept. To assess the possibilities of introducing Total Quality Management system in the seafood industry in Kerala in order to effectively adopt the HACCP concept. This is also aimed at improving the quality of the products and productivity of the industry by sustaining the world markets in the long run.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unit commitment is an optimization task in electric power generation control sector. It involves scheduling the ON/OFF status of the generating units to meet the load demand with minimum generation cost satisfying the different constraints existing in the system. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision task and Reinforcement Learning solution is formulated through one efficient exploration strategy: Pursuit method. The correctness and efficiency of the developed solutions are verified for standard test systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.