7 resultados para Eggert Ólafsson, 1726-1768.
em Cochin University of Science
Resumo:
Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol
Resumo:
Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol
Resumo:
Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol
Resumo:
Inter-digital capacitive electrodes working as electric field sensors have been developed for touch panel applications. Evaluation circuits to convert variations in electric fields in such sensors into computer compatible data are commercially available. We report development of an Interdigital capacitive electrode working as a sensitive pressure sensor in the range 0-120 kPa. Essentially it is a touch/proximity sensor converted into a pressure sensor with a suitable elastomer buffer medium acting as the pressure transmitter. The performance of the sensor has been evaluated and reported. Such sensors can be made very economical in comparison to existing pressure sensors. Moreover, they are very convenient to be fabricated into sensor arrays involving a number of sensors for distributed pressure sensing applications such as in biomedical systems.
Resumo:
The design and fabrication of fiber based ammonia sensors employing Bromothymol blue and Chitosan as sensing elements are presented in this paper. In the presence of ammonia gas the absorption of Bromothymol blue changes while in the case of Chitosan the refractive index changes which in turn modulates the intensity of light propagating through a fiber.
Resumo:
A comparative study of two biopolymer based fiber optic humidity sensors is presented in this paper. Sensing elements Agarose and Chitosan swells in the presence of water vapour and undergoes changes in refractive index and modulates the intensity of light propagating through a fiber with Agarose or Chitosan as cladding.