9 resultados para Efficient and environmental Lighting

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the first use of polystyrene-supported poly(amidoamine) (PAMAM) dendrimers as heterogeneous basic organocatalysts for carbon–carbon bond formation. Polystyrene-supported PAMAM dendrimers of first, second and third generations have been used as reusable base catalysts in Knoevenagel condensations of carbonyl compounds with active methylene compounds. The reactions proceed in short periods of time and with 100% selectivity. This novel catalyst eliminates the use of aromatic and halogenated solvents, as well as complex purification processes. The catalysts can be recycled ten times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

School of Management Studies, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper industry is one of the oldest and largest industries in Kerala. Despite the developments in the industry in terms of growth in output , value added and employment generation, many of the units face grave problems. Irrespective of the size of the plant, the problems of the industry are general in nature. The problems are galore in the supply, not the demand side. Amomg the problems, the important ones are: raw material scarcity, energy deficiency and obsolete technology. Further, the industry is subject to many controls by the Government — price control, product control and raw materials control — which result in the dwindling of profits and investments. Equally important are the reservations against the industry for polluting the environment byeffluent disposal on the one hand and affecting ecological balance by depleting the existing forest on the other. Apart from the large, medium and small pulp and paper mills, there are about 30 hand made paper units in Kerala which can be categorised as village and cottage industry. Almost all of these units began at the initiative and support of Khadi and Village Industries Commission. The primary purpose of these units is employment generation, and not profit making. Currently many of these units are in the red and many others are on the verge of closure. Therefore, a separate analysis of the growth performance, and problems and prospects of the hand made paper industry has also been attempted. It is analysed separately because of the very small size of the hand made paper units

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel, simple, efficient and distribution-free re-sampling technique for developing prediction intervals for returns and volatilities following ARCH/GARCH models. In particular, our key idea is to employ a Box–Jenkins linear representation of an ARCH/GARCH equation and then to adapt a sieve bootstrap procedure to the nonlinear GARCH framework. Our simulation studies indicate that the new re-sampling method provides sharp and well calibrated prediction intervals for both returns and volatilities while reducing computational costs by up to 100 times, compared to other available re-sampling techniques for ARCH/GARCH models. The proposed procedure is illustrated by an application to Yen/U.S. dollar daily exchange rate data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we investigate the diversity of pathogenic Vibrio species in marine environments close to Suva, Fiji. We use four distinct yet complementary analyses – biochemical testing, phylogenetic analyses, metagenomic analyses and molecular typing – to provide some preliminary insights into the diversity of vibrios in this region. Taken together our analyses confirmed the presence of nine Vibrio species, including three of the most important disease-causing vibrios (i.e. V. cholerae, V. parahaemolyticus and V. vulnificus), in Fijian marine environments. Furthermore, since toxigenic V. parahaemolyticus are present on fish for consumption we suggest these bacteria represent a potential public health risk. Our results from Illumina short read sequencing are encouraging in the context of microbial profiling and biomonitoring. They suggest this approach may offer an efficient and costeffective method for studying the dynamics of microbial diversity in marine environments over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.