17 resultados para Efficiency optimization and electric vehicles
em Cochin University of Science
Resumo:
Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.
Resumo:
A study was undertaken to isolate phytase producers from environment and to segregate the most highly efficient phytase producer and to develop a bioprocess technology for commercial application. During this process, a potential phytase producer Bacillus MCCB 242 was isolated and characterized phenotypically and genotypically. Subsequently, phytase production was optimized, the enzyme purified and characterized and an appropriate downstream process also could be standardized.Precisely, through this work an environmental isolate Bacillus MCCB 242 could be brought out as phytase producer for commercial application. The enzyme production could be optimized and characterized, and an appropriate downstream process standardized. Cytotoxicity studies revealed the enzyme safe for feed application, especially in fish.
Resumo:
Significant results of our experimental investigations on the dependence of pH on real time transmission characteristics on recording media fabricated by doping PVC with complexed methylene blue are presented. The optimum pH value for faster bleaching was found to be 4×5. In typical applications, the illumination from one side, normal to the surface of this material, initiates a chemical sequence that records the incident light pattern in the polymer. Thus direct imaging can be successfully done on this sample. The recorded letters were very legible with good contrast and no scattering centres. Diffraction efficiency measurements were also carried out on this material.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
Post-transcriptional gene silencing by RNA interference is mediated by small interfering RNA called siRNA. This gene silencing mechanism can be exploited therapeutically to a wide variety of disease-associated targets, especially in AIDS, neurodegenerative diseases, cholesterol and cancer on mice with the hope of extending these approaches to treat humans. Over the recent past, a significant amount of work has been undertaken to understand the gene silencing mediated by exogenous siRNA. The design of efficient exogenous siRNA sequences is challenging because of many issues related to siRNA. While designing efficient siRNA, target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. So before doing gene silencing by siRNAs, it is essential to analyze their off-target effects in addition to their inhibition efficiency against a particular target. Hence designing exogenous siRNA with good knock-down efficiency and target specificity is an area of concern to be addressed. Some methods have been developed already by considering both inhibition efficiency and off-target possibility of siRNA against agene. Out of these methods, only a few have achieved good inhibition efficiency, specificity and sensitivity. The main focus of this thesis is to develop computational methods to optimize the efficiency of siRNA in terms of “inhibition capacity and off-target possibility” against target mRNAs with improved efficacy, which may be useful in the area of gene silencing and drug design for tumor development. This study aims to investigate the currently available siRNA prediction approaches and to devise a better computational approach to tackle the problem of siRNA efficacy by inhibition capacity and off-target possibility. The strength and limitations of the available approaches are investigated and taken into consideration for making improved solution. Thus the approaches proposed in this study extend some of the good scoring previous state of the art techniques by incorporating machine learning and statistical approaches and thermodynamic features like whole stacking energy to improve the prediction accuracy, inhibition efficiency, sensitivity and specificity. Here, we propose one Support Vector Machine (SVM) model, and two Artificial Neural Network (ANN) models for siRNA efficiency prediction. In SVM model, the classification property is used to classify whether the siRNA is efficient or inefficient in silencing a target gene. The first ANNmodel, named siRNA Designer, is used for optimizing the inhibition efficiency of siRNA against target genes. The second ANN model, named Optimized siRNA Designer, OpsiD, produces efficient siRNAs with high inhibition efficiency to degrade target genes with improved sensitivity-specificity, and identifies the off-target knockdown possibility of siRNA against non-target genes. The models are trained and tested against a large data set of siRNA sequences. The validations are conducted using Pearson Correlation Coefficient, Mathews Correlation Coefficient, Receiver Operating Characteristic analysis, Accuracy of prediction, Sensitivity and Specificity. It is found that the approach, OpsiD, is capable of predicting the inhibition capacity of siRNA against a target mRNA with improved results over the state of the art techniques. Also we are able to understand the influence of whole stacking energy on efficiency of siRNA. The model is further improved by including the ability to identify the “off-target possibility” of predicted siRNA on non-target genes. Thus the proposed model, OpsiD, can predict optimized siRNA by considering both “inhibition efficiency on target genes and off-target possibility on non-target genes”, with improved inhibition efficiency, specificity and sensitivity. Since we have taken efforts to optimize the siRNA efficacy in terms of “inhibition efficiency and offtarget possibility”, we hope that the risk of “off-target effect” while doing gene silencing in various bioinformatics fields can be overcome to a great extent. These findings may provide new insights into cancer diagnosis, prognosis and therapy by gene silencing. The approach may be found useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in different areas of bioinformatics.
Resumo:
The differaction efficiency,sensitivity and storage life of Methylene Blue sencitized poly (vinyl chloride) film was improved by the addition of an electron donor in the matrix. The addition of pyridine enhanced the diffraction efficiency by two times and storage life of the gratings was increased to 2-3 days.
Resumo:
The differaction efficiency,sensitivity and storage life of Methylene blue sensitized poly(vinyl chloride) film was improved by the addition of an electron donor in the matrix. The addition of pyridine enhanced the diffraction efficiency by two times and storage life of the gratings was increased to 2-3 days.
Resumo:
A methylene-blue-sensitized polymer blend of polyvinyl alcohol and polyacrylic acid is fabricated and tested for holographic recording. It was found to have good characteristics such as high sensitivity, storage stability, ease of fabrication, and environmental stability. Optimization of the ratio of polyvinyl alcohol polyacrylic acid, the sensitizer concentration, pH, energy, diffraction efficiency measurements, etc., have been done. pH is found to have a great influence on the recovery of the dye in this matrix. The results of experimental investigations into the properties of this new material are reported.
Resumo:
The practical applications of microstrip antennas for mobile systems are in portable or pocket-size equipment and in vehicles. Antennas for VHFIUHF handheld portable equipment, such as pagers, portable telephones and transceivers, must naturally be small in size, light in weight and compact in structure. There is a growing tendency for portable equipment to be made smaller and smaller as the demand for personal communication rapidly increases, and the development of very compact hand-held units has become urgent.In this thesis work, main aim is to develop a more and more reduced sized microstrip patch antenna. It is well known that the smaller the antenna size, the lower the antenna efficiency. During the period of work, three different compact circular sided microstrip patches are developed and analysed, which have a significant size reduction compared to standard circular disk antenna (the most compact one of the basic microstrip patch configurations), without much deterioration of its properties like gain, bandwidth and efficiency. In addition to this the interesting results, dual port operation and circular polarization are also observed for some typical designs of these patches. These make the patches suitable for satellite and mobile communication systems.The theoretical investigations are carried out on these compact patches. The empirical relations are developed by modifying the standard equations of rectangular and circular disk microstrip patches, which helps to predict the resonant frequencies easily.
Resumo:
This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF
Resumo:
Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.
Resumo:
Holographic technology is at the dawn of quick evolution in various new areas including holographic data storage, holographic optical elements, artificial intelligence, optical interconnects, optical correlators, commerce, medical practice, holographic weapon sight, night vision goggles and games etc. One of the major obstacles for the success of holographic technology to a large extent is the lack of suitable recording medium. Compared with other holographic materials such as dichromated gelatin and silver halide emulsions, photopolymers have the great advantage of recording and reading holograms in real time and the spectral sensitivity could be easily shifted to the type of recording laser used by simply changing the sensitizing dye. Also these materials possess characteristics such as good light sensitivity, real time image development, large dynamic range, good optical properties, format flexibility, and low cost. This thesis describes the attempts made to fabricate highly economic photopolymer films for various holographic applications. In the present work, Poly (vinyl alcohol) (PVA) and poly (vinyl chloride) (PVC) are selected as the host polymer matrices and methylene blue (MB) is used as the photosensitizing dye. The films were fabricated using gravity settling method. No chemical treatment or pre/post exposures were applied to the films. As the outcome of the work, photopolymer films with more than 70% efficiency, a permanent recording material which required no fixing process, a reusable recording material etc. were fabricated.
Resumo:
The present work deals with the characterization of polyhydroxyalkanoates accumulating vibrios from marine benthic environments and production studies of polyhydroxyalkanoates by vibrio sp.BTKB33. Vibrios are a group of (iram negative, curved or straight motile rods that normally inhabit the aquatic environments.The present study therefore aimed at evaluating the occurrence of PHA accumulating vibrios inhabiting marine benthic environments; characterizing the potential PHA accumulators employing phenotypic and genotypic approaches and molecular characterization of the PHA synthase gene. The study also evaluated the PHA production in V:'hri0 sp. strain BTKB33, through submerged fennentation using statistical optimization and characterized the purified biopolymer. Screening for PHA producing vibrios from marine benthic environments. Characterization of PHA producers employing phenotypic and genotypic approaches.The incidence of PHA accumulation in Vibrio sp. isolated from marine sediments was observed to be high, indicating that the natural habitat of these bacteria are stressful. Considering their ubiquitous nature, the ecological role played by vibrios in maintaining the delicate balance of the benthic ecosystem besides returning potential strains, with the ability to elaborate a plethora of extracellular enzymes for industrial application, is significant. The elaboration of several hydrolytic enzymes by individuals also emphasize the crucial role of vibrios in the mineralization process in the marine environment. This study throws light on the extracellular hydrolytic enzyme profile exhibited by vibrios. It was concluded that apart from the PHA accumulation, presence of exoenzyme production and higher MAR index also aids in their survival in the highly challenging benthic enviromnents. The phylogenetic analysis of the strains and studies on intra species variation within PHA accumulating strains reveal their diversity. The isolate selected for production in this study was Vibrio sp. strain BTKB33, identified as V.azureus by 16S rDNA sequencing and phenotypic characterization. The bioprocess variables for PHA production utilising submerged fermentation was optimized employing one-factor-at-a-time-method, PB design and RSM studies. The statistical optimization of bioprocess variables revealed that NaCl concentration, temperature and incubation period are the major bioprocess variables influencing PHA production and PHA content. The presence of Class I PHA synthase genes in BTKB33 was also unveiled. The characterization of phaC genes by PCR and of the extracted polymer employing FTIR and NMR analysis revealed the presence of polyhydroxybutyrate, smallest known PI-IAs, having wider domestic, industrial and medical application. The strain BTKB33 bearing a significant exoenzyme profile, can thus be manipulatedin future for utilization of diverse substrates as C- source for PHA production. In addition to BTKB33, several fast growing Vibrio sp. having PHA accumulating ability were also isolated, revealing the prospects of this environment as a mine for novel PHA accumulating microbes. The findings of this study will provide a reference for further research in industrial production of PHAs from marine microorganisms .
Resumo:
Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.