8 resultados para EXTENDED EXPONENTIAL DISTRIBUTION
em Cochin University of Science
Some Characterization problems associated with the Bivariate Exponential and Geometric Distributions
Some characterization problems associated with the bivariate exponential and geometric distributions
Resumo:
It is highly desirable that any multivariate distribution possessescharacteristic properties that are generalisation in some sense of the corresponding results in the univariate case. Therefore it is of interest to examine whether a multivariate distribution can admit such characterizations. In the exponential context, the question to be answered is, in what meaning— ful way can one extend the unique properties in the univariate case in a bivariate set up? Since the lack of memory property is the best studied and most useful property of the exponential law, our first endeavour in the present thesis, is to suitably extend this property and its equivalent forms so as to characterize the Gumbel's bivariate exponential distribution. Though there are many forms of bivariate exponential distributions, a matching interest has not been shown in developing corresponding discrete versions in the form of bivariate geometric distributions. Accordingly, attempt is also made to introduce the geometric version of the Gumbel distribution and examine several of its characteristic properties. A major area where exponential models are successfully applied being reliability theory, we also look into the role of these bivariate laws in that context. The present thesis is organised into five Chapters
Resumo:
The thesis deals with analysis of some Stochastic Inventory Models with Pooling/Retrial of Customers.. In the first model we analyze an (s,S) production Inventory system with retrial of customers. Arrival of customers from outside the system form a Poisson process. The inter production times are exponentially distributed with parameter µ. When inventory level reaches zero further arriving demands are sent to the orbit which has capacity M(<∞). Customers, who find the orbit full and inventory level at zero are lost to the system. Demands arising from the orbital customers are exponentially distributed with parameter γ. In the model-II we extend these results to perishable inventory system assuming that the life-time of each item follows exponential with parameter θ. The study deals with an (s,S) production inventory with service times and retrial of unsatisfied customers. Primary demands occur according to a Markovian Arrival Process(MAP). Consider an (s,S)-retrial inventory with service time in which primary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory is controlled by the (s,S) policy and (s,S) inventory system with service time. Primary demands occur according to Poissson process with parameter λ. The study concentrates two models. In the first model we analyze an (s,S) Inventory system with postponed demands where arrivals of demands form a Poisson process. In the second model, we extend our results to perishable inventory system assuming that the life-time of each item follows exponential distribution with parameter θ. Also it is assumed that when inventory level is zero the arriving demands choose to enter the pool with probability β and with complementary probability (1- β) it is lost for ever. Finally it analyze an (s,S) production inventory system with switching time. A lot of work is reported under the assumption that the switching time is negligible but this is not the case for several real life situation.
Resumo:
This thesis is devoted to the study of some stochastic models in inventories. An inventory system is a facility at which items of materials are stocked. In order to promote smooth and efficient running of business, and to provide adequate service to the customers, an inventory materials is essential for any enterprise. When uncertainty is present, inventories are used as a protection against risk of stock out. It is advantageous to procure the item before it is needed at a lower marginal cost. Again, by bulk purchasing, the advantage of price discounts can be availed. All these contribute to the formation of inventory. Maintaining inventories is a major expenditure for any organization. For each inventory, the fundamental question is how much new stock should be ordered and when should the orders are replaced. In the present study, considered several models for single and two commodity stochastic inventory problems. The thesis discusses two models. In the first model, examined the case in which the time elapsed between two consecutive demand points are independent and identically distributed with common distribution function F(.) with mean (assumed finite) and in which demand magnitude depends only on the time elapsed since the previous demand epoch. The time between disasters has an exponential distribution with parameter . In Model II, the inter arrival time of disasters have general distribution (F.) with mean ( ) and the quantity destructed depends on the time elapsed between disasters. Demands form compound poison processes with inter arrival times of demands having mean 1/. It deals with linearly correlated bulk demand two
Commodity inventory problem, where each arrival demands a random number of items of each commodity C1 and C2, the maximum quantity demanded being a (< S1) and b(
Resumo:
The present study on the characterization of probability distributions using the residual entropy function. The concept of entropy is extensively used in literature as a quantitative measure of uncertainty associated with a random phenomenon. The commonly used life time models in reliability Theory are exponential distribution, Pareto distribution, Beta distribution, Weibull distribution and gamma distribution. Several characterization theorems are obtained for the above models using reliability concepts such as failure rate, mean residual life function, vitality function, variance residual life function etc. Most of the works on characterization of distributions in the reliability context centers around the failure rate or the residual life function. The important aspect of interest in the study of entropy is that of locating distributions for which the shannon’s entropy is maximum subject to certain restrictions on the underlying random variable. The geometric vitality function and examine its properties. It is established that the geometric vitality function determines the distribution uniquely. The problem of averaging the residual entropy function is examined, and also the truncated form version of entropies of higher order are defined. In this study it is established that the residual entropy function determines the distribution uniquely and that the constancy of the same is characteristics to the geometric distribution
Resumo:
In this article it is proved that the stationary Markov sequences generated by minification models are ergodic and uniformly mixing. These results are used to establish the optimal properties of estimators for the parameters in the model. The problem of estimating the parameters in the exponential minification model is discussed in detail.
Resumo:
In the present environment, industry should provide the products of high quality. Quality of products is judged by the period of time they can successfully perform their intended functions without failure. The cause of the failures can be ascertained through life testing experiments and the times to failure due to different cause are likely to follow different distributions. Knowledge of this distribution is essential to eliminate causes of failures and thereby to improve the quality and the reliability of products. The main accomplishment expected to the study is to develop statistical tools that could facilitate solution to lifetime data arising in such and similar contexts
Resumo:
This thesis Entitled Bayesian inference in Exponential and pareto populations in the presence of outliers. The main theme of the present thesis is focussed on various estimation problems using the Bayesian appraoch, falling under the general category of accommodation procedures for analysing Pareto data containing outlier. In Chapter II. the problem of estimation of parameters in the classical Pareto distribution specified by the density function. In Chapter IV. we discuss the estimation of (1.19) when the sample contain a known number of outliers under three different data generating mechanisms, viz. the exchangeable model. Chapter V the prediction of a future observation based on a random sample that contains one contaminant. Chapter VI is devoted to the study of estimation problems concerning the exponential parameters under a k-outlier model.