2 resultados para ETHANOL FUEL-CELL

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of catalysts in chemical and refining processes has increased rapidly since 1945, when oil began to replace coal as the most important industrial raw material. Catalysis has a major impact on the quality of human life as well as economic development. The demand for catalysts is still increasing since catalysis is looked up as a solution to eliminate or replace polluting processes. Metal oxides represent one of the most important and widely employed classes of solid catalysts. Much effort has been spent in the preparation, characterization and application of metal oxides. Recently, great interest has been devoted to the cerium dioxide (CeO2) containing materials due to their broad range of applications in various fields, ranging from catalysis to ceramics, fuel cell technologies, gas sensors, solid state electrolytes, ceramic biomaterials, etc., in addition to the classical application of CeO2 as an additive in the so-called three way catalysts (TWC) for automotive exhaust treatment. Moreover, it can promote water gas shift and steam reforming reactions, favours catalytic activity at the interfacial metal-support sites. The solid solutions of ceria with Group IV transitional-metals deserve particular attention for their applicability in various technologically important catalytic processes. Mesoporous CeO2−ZrO2 solid solutions have been reported to be employed in various reactions which include CO oxidation, soot oxidation, water-gas shift reaction, and so on. Inspired by the unique and promising characteristics of ceria based mixed oxides and solid solutions for various applications, we have selected ceria-zirconia oxides for our studies. The focus of the work is the synthesis and investigation of the structural and catalytic properties of modified and pure ceria-zirconia mixed oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioethanol is a liquid fuel obtained from fermentation of sugar/starch crops. Lignocellulosic biomass being less expensive is considered a future alternative for the food crops. One of the main challenges for the use of lignocellulosics is the development of an efficient pre-treatment process. Pretreatments are classified into three - physical, chemical, and biological pretreatment. Chemical process has not been proven suitable so far, due to high costs and production of undesired by-products. Biologically, hydrolysis can be enhanced by microbial or enzymatic pretreatment. Studies show that the edible mushrooms of Pleurotus sp. produce several extracellular enzymes which reduce the structural and chemical complexity of fibre. In the present study, P. ostreatus and P. eous were cultivated on paddy straw. Spent substrate left after mushroom cultivation was powdered and used for ethanol production. Saccharomyces sp. was used for fermentation studies. Untreated paddy straw was used as control. Production of ethanol from P. ostreatus substrate was 5.5 times more when compared to untreated paddy straw, while the spent substrate of P. eous gave 5 times increase in ethanol yield. Assays showed the presence of several extracellular enzymes in the spent substrate of both species, which together contributed to the increase in ethanol yield