13 resultados para ENZYMATIC INTERESTERIFICATION

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the synthesis, characterization and catalysis activity studies of some zeolite encapsulated complexes. Encapsulation inside the zeolite cages makes the catalysts more stable. Further, the framework prevents the complexes from dimerising. Catalysis by metal complexes encapsulated in the cavities of zeolites and other molecular sieves has many features of homogeneous, heterogenous and enzymatic catalysis. Serious attempts has been made to gain product selectivity in catalysis .The catalytic activity shown by the encapsulated complexes can be correlated to the structure of the active site inside the zeolite pore. It deals with the studies on the partial oxidation of benzyl alcohol to benzaldehyde. The oxidatio was carried out using hydrogen peroxide as oxidant in presence of PdYDMG and CuYSPP as catalysts. The product (benzaldehyde) was detected using TLC and confirmed using GC.The catalytic activity of the complexes was tested for oxidation under various conditions. The operating conditions like the amount of the catalyst, reaction time, oxidant to substrate ratio, reaction temprature, and solvents have been optimized. No further oxidation products were obtained on continuing the reaction for four hours beyond the optimum time. Maximum conversion was obtained at room temperature and the percentage conversion decreased with increase in temperature. Activity was found to be dependent on the solvent used. With increasing awareness about the dangers of environmental degradation, research in chemistry is getting increasing geared to the development of “green chemistry,” by designing environmentally friendly products and processes that bring down the generation and use of hazardous substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present studies it is clear that Bacillus pumilus xylanase is having the characteristic suited for an industrial enzyme (xylanases that are active and stable at elevated temperatures and alkaline pH are needed). SSF production of xylanases and its application appears to be an innovative technology where the fermented substrate is the enzyme source that is used directly in the bleaching process without a prior downstream processing. The direct use of SSF enzymes in bleaching is a relatively new biobleaching approach. This can certainly benefit the bleaching process to lower the xylanase production costs and improve the economics and viability of the biobleaching technology. The application of enzymes to the bleaching process has been considered as an environmentally friendly approach that can reduce the negative impact on the environment exerted by the use of chlorine-based bleaching agents. It has been demonstrated that pretreatment of kraft pulp with xylanase prior to bleaching (biobleaching) can facilitate subsequent removal of lignin by bleaching chemicals, thereby, reducing the demand for elemental chlorine or improving final paper brightness. Using this xylanase pre-treatment, has resulted in an increased of brightness (8.5 Unit) when compared to non-enzymatic treated bleached pulp prepared using identical conditions. Reduction of the consumption of active chlorine can be achieved which results in a decrease in the toxicity, colour, chloride and absorbable organic halogen (AOX) levels of bleaching effluents. The xylanase treatment improves drainage, strength properties and the fragility of pulps, and also increases the brightness of pulps. This positive result shows that enzyme pre-treatment facilitates the removal of chromophore fragments of pulp there by making the process more environment friendly

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poor cold flow properties of vegetable oils are a major problem preventing the usage of many abundantly available vegetable oils as base stocks for industrial lubricants. The major objective of this research is to improve the cold flow properties of vegetable oils by various techniques like additive addition and different chemical modification processes. Conventional procedure for determining pour point is ASTM D97 method. ASTM D97 method is time consuming and reproducibility of pour point temperatures is poor between laboratories. Differential Scanning Calorimetry (DSC) is a fast, accurate and reproducible method to analyze the thermal activities during cooling/heating of oil. In this work coconut oil has been chosen as representative vegetable oil for the analysis and improvement cold flow properties since it is abundantly available in the tropics and has a very high pour point of 24 °C. DSC is used for the analysis of unmodified and modified vegetable oil. The modified oils (with acceptable pour points) were then subjected to different tests for the valuation of important lubricant properties such as viscometric, tribological (friction and wear properties), oxidative and corrosion properties.A commercial polymethacrylate based PPD was added in different percentages and the pour points were determined in each case. Styrenated phenol(SP) was added in different concentration to coconut oil and each solution was subjected to ASTM D97 test and analysis by DSC. Refined coconut oil and other oils like castor oil, sunflower oil and keranja oil were mixed in different proportions and interesterification procedure was carried out. Interesterification of coconut oil with other vegetable oils was not found to be effective in lowering the pour point of coconut oil as the reduction attained was only to the extent of 2 to 3 °C.Chemical modification by acid catalysed condensation reaction with coconut oil castor oil mixture resulted in significant reduction of pour point (from 24 ºC to -3 ºC). Instead of using triacylglycerols, when their fatty acid derivatives (lauric acid- the major fatty acid content of coconut oil and oleic acid- the major fatty acid constituents of monoand poly- unsaturated vegetable oils like olive oil, sunflower oil etc.) were used for the synthesis , the pour point could be brought down to -42 ºC. FTIR and NMR spectroscopy confirmed the ester structure of the product which is fundamental to the biodegradability of vegetable oils. The tribological performance of the synthesised product with a suitable AW/EP additive was comparable to the commercial SAE20W30 oil. The viscometric properties (viscosity and viscosity index) were also (with out additives) comparable to commercial lubricants. The TGA experiment confirmed the better oxidative performance of the product compared to vegetable oils. The sample passed corrosion test as per ASTM D130 method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of present investigation was to study the population genetic structure of S. longiceps by applying three different basic population genetic techniques such as cytogenetics, non-enzymatic biochemicalgenetics (general protein) and morphomeristics/metrics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was focused to study the immobilization of enzymes on polymers. A large range of polymer matrices have been employed as supports for enzyme immobilization. Here polyaniline (PAN!) and poly(0~toluidine) (POT) were used as supports. PANI and POT provides an excellent support for enzyme immobilization by virtue of its facile synthesis, superior chemical and physical stabilities, and large retention capacity. We selected industrially important starch hydrolyzing enzymes a-amylase and glucoamylase for the study. In this work the selected enzymes were immobilized via adsorption and covalent bonding methods.To optimize the catalytic efficiency and stability of the resulting biocatalysts, the attempt was made to understand the immobilization effects on enzymatic properties. The effect of pH of the immobilization medium, time of immobilization on the immobilization efficiency was observed. The starch hydrolyzing activity of free 0:-amylase and glucoamylase were compared with immobilized forms. Immobilization on solid supports changes the microenvironment of the enzyme there by influences the pH and temperature relationship on the enzymatic activity. Hence these parameters also optimized. The reusability and storage stability of immobilized enzymes an important aspect from an application standpoint, especially in industrial applications. Taking in to consideration of this, the reusability and the long tenn storage stability of the immobilized enzyme investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibrio are important during hatchery rearing. aquaculture phase and post-harvest quality of shrimps. Vibrio spp are of concern to shrimp farmers and hatchery operators because certain species can cause Vibriosis. Vibrio species are of concern to humans because certain species cause serious diseases.With the progress in aquaculture, intensive systems used for shrimp aquaculture create an artificial environment that increases bacterial growth. To maintain the productivity of such an intensive aquaculture, high inputs of fish protein have to be employed for feeding together with high levels of water exchange and the massive use of antibiotics/ probiotics / chemicals. It seems that the combination of these conditions favours the proliferation of vibrios and enhances their virulence and disease prevalence. The risk of a microbial infection is high, mainly at larval stages. The effect and severity are related to Vibrio species and dose, water, feed, shrimp quality and aquaculture management.Consumption of seafood can occasionally result in food-bome illnesses due to the proliferation of indigenous pathogens like Vibrio.Of the l2 pathogenic Vibrio species, 8 species are known to be directly food associated. Strict quality guidelines have been laid by the importing nations, for the food products that enter their markets. The microbiological quality requirement for export of frozen shrimp products is that V.cholerae, V.parahaemolyticus and V. vulnificus should be absent in 25g of the processed shrimp (Export Inspection Council of India, 1995). The mere presence of these pathogenic Vibrios is sufficient for the rejection of the exported product.The export rejections cause serious economic loss to the shrimp industry and might harm the brand image of the shrimp products from the countiy.There is a need for an independent study on the incidence of different pathogenic vibrios in shrimp aquaculture and investigate their biochemical characteristics to have a better understanding about the growth and survival of these organisms in the shrimp aquaculture niche. PCR based methods (conventional PCR, duplex PCR, multiplex-PCR and Real Time PCR) for the detection of the pathogenic Vibrios is important for rapid post-harvest quality assessment. Studies on the genetic heterogeneity among the specific pathogenic vibrio species isolated from shrimp aquaculture system provide; valuable information on the extent of genetic diversity of the pathogenic vibrios, the shrimp aquaculture system.So the present study was undertaken to study the incidence of pathogenic Vibrio spp. in Penaeus monodon shrimp hatcheries and aquaculture farms, to carry out biochemical investigations of the pathogenic Vibrio spp isolated from P. monodon hatchery and. aquaculture environments, to assess the effect of salt (NaCl) on the growth and enzymatic activities of pathogenic Vibrio spp., to study the effect of preservatives, and chemicals on the growth of pathogenic Vibrio spp. and to employ polymerase chain reaction (PCR) methods for the detection of pathogenic V ibrio spp.Samples of water (n=7) and post-larvae (n=7) were obtained from seven Penaeus monodon hatcheries and samples of water (n=5), sediment (n=5) and shrimp (n=5) were obtained from five P. monodon aquaculture farms located on the East Coast of lndia. The microbiological examination of water, sediment, post-larvae and shrimp samples was carried out employing standard methods and by using standard media.The higher bacterial loads were obtained in pond sediments which can be attributed to the accumulation of organic matter at the pond bottom which stimulated bacterial growth.Shrimp head. (4.78 x 105 +/- 3.0 x 104 cfu/g) had relatively higher bacterial load when compared to shrimp muscle 2.7 x 105 +/- 1.95 x 104 cfu/g). ln shrimp hatchery samples, the post-larvae (2.2 x 106 +/- 1.9 x 106 cfu/g) had higher bacterial load than water (5.6 x 103 +/- 3890 cfu/ml).The mean E.coli counts were higher in aquaculture pond sediment (204+/-13 cfu/g) and pond water (124+/-88 cfu/ml). Relatively lower Escherichia coli counts were obtained from shrimp samples (12+/-11 to 16+/-16.7 cfu/g). The presence of E.coli in aquaculture environment might have been from the source water. E.coli was not detected in hatchery waters and post-larvae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-glutaminases (L—glutamine amidohydrolase EC.3.5.l.2) is proposed as a prospective candidate for enzyme therapy cnf cancer and also as zui important additive during enzymatic digestion of shoyu koji since it could enhance glutamate content of soysauce. Commercial production of glutaminase could make possible its wide application in these areas, which would demand availability of potential sources and suitable fermentation techniques. The ‘present investigation highlighted marine environment as a potential source of efficient glutaminase producing bacteria mainly species of pseudomonas, aeromonas ,vibrio,alcaligenes, acinetobacter bacillus and planococci.Among them pseudomonas fluorescens ACMR 267 and v.cholerae ACMR 347 were chosen as the ideal strains for glutaminase production.Extracellular glutaminase fraction from all strains were in higher titres than intracellular enzymes during growth in mineral media, nutrient broth and nutrient broth added with glutamine.Glutaminase from all strains were purified employing (NH4)2SO4 fractionation followed tnr dialysis and ion exchange chromatography. The purified glutaminase from all strains were observed to be active and stable over a wide range of gfii and temperature.Optimization studies cflf environmental variables that normally influence time yiehi of glutaminase indicated that the optimal requirements of these bacteria for maximal glutaminase production remained stable irrespective of the medium, they are provided with for enzyme production. However, solid state fermentation technique was observed to be the most suitable process for the production of Glutaminase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poisoning by pesticides from agricultural fields is a serious water pollution problem and its environmental long-term effect may result in the incidence of poisoning of fish and other aquatic life forms (jyothi and Narayan, 1999). Fishes like Heteropneustesfbssilis and C/arius batrac/nus are especially prone to serious pesticide pollution as their habitat is mostly the agriculture area. Though only few studies are conducted in this area, it can be assessed from the local information that, population of such fish is on the verge of vulnerability due to extensive use of pesticides. The knowledge of sublethal effects of xenobiotic compounds on hematological parameters, enzyme activities and metabolite concentrations is very important to delineate the fish health status and provide a future understanding of ecological impacts. These pesticides act by causing inhibition of cholinesterase enzymes (ChE) by formation of enzyme inhibitor complex (O'Brien, 1976) and damaging the nervous system. These effects may result in metabolic disorders. Associated to cholinesterase activities, a study of other enzymes such as phosphatases and aminotransferases close to intermediary metabolite determination provides a wider view of metabolism. Interest in toxicological aspects has grown in recent years and research is now increasingly focused on mechanistic aspects of oxidative damage and cellular responses in biological system. The term ‘biomarker’ is generally used in a broad sense to include almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical or biological (WHO, 1993). As biomarker stands for immediate responses, they are used as early warning signals of biological effects caused by environmental pollutants. The present work attempts to assess the toxicity of organophosphorus insecticide monocrotophos on the experimental organism selected for this study namely stinging catfish (Heteropneustesfossi/is) (Bloch), and to probe into the stress responses of the organism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fishes are one of the most important members of the aquatic food chain, and through them some toxicants may reach human beings as well. The selection of organisms for toxicity test is mainly based on certain criteria like its ecological status, position within the food chain, suitability for laboratory studies, genetically stable, uniform populations and adequate background data on the organism (Buikema et al., 1982). The species selected for the present study Etroplus maculatus satisfy most of the above protocols. Rechten (1980) opined it as a laboratory favorite of fish researchers. However, there are difficulties in the rise of fishes for pollution assessment impact. Most important of these is our limited understanding of the mechanism of toxicity. The interpretation of the significance or specificity of a measured biological response could there for become difficult. Not withstanding these limitations, attempts have been made to the normal haematology and to analyze the impact of heavy metal at realistic levels to the experimental media, on the haematology, and enzymatic activity and histology of Etroplus maculatus

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growth medium with Leibovitz-15 L-15.as the base, supplemented with foetal bovine serum 10% vrv., fish muscle extract 10% vrv., prawn muscle extract 10% vrv., lectin concanavalin A. 0.02 mg mly1., lipopolysaccharide 0.02 mg mly1., glucose D 0.2 mg mly1., ovary extract 0.5% vrv.and prawn haemolymph 0.5%. has been formulated with 354"10 mOsm for the development and maintenance of a cell culture system from the ovarian tissue of African catfish, Clarias gariepinus. For its subculturing, a cell dissociationrextracting solution, composed of equal portions of trypsin phosphate versene glucose TPVG. containing 0.0125% wrv.trypsin and 25% vrv.non-enzymatic cell dissociation solution 1 and 2, has also been developed with which the cell culture can be passaged 15 times after which they cease to multiply and consequently perish. The cell cultures can be maintained for 12–15 days without fluid change between the passages. This is the first report of a cell culture system from the ovarian tissues of African catfish

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioethanol is a liquid fuel obtained from fermentation of sugar/starch crops. Lignocellulosic biomass being less expensive is considered a future alternative for the food crops. One of the main challenges for the use of lignocellulosics is the development of an efficient pre-treatment process. Pretreatments are classified into three - physical, chemical, and biological pretreatment. Chemical process has not been proven suitable so far, due to high costs and production of undesired by-products. Biologically, hydrolysis can be enhanced by microbial or enzymatic pretreatment. Studies show that the edible mushrooms of Pleurotus sp. produce several extracellular enzymes which reduce the structural and chemical complexity of fibre. In the present study, P. ostreatus and P. eous were cultivated on paddy straw. Spent substrate left after mushroom cultivation was powdered and used for ethanol production. Saccharomyces sp. was used for fermentation studies. Untreated paddy straw was used as control. Production of ethanol from P. ostreatus substrate was 5.5 times more when compared to untreated paddy straw, while the spent substrate of P. eous gave 5 times increase in ethanol yield. Assays showed the presence of several extracellular enzymes in the spent substrate of both species, which together contributed to the increase in ethanol yield