7 resultados para ENGINEERING, CHEMICAL

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is concerned with Autoregressive Moving Average (ARMA) models of time series. ARMA models form a subclass of the class of general linear models which represents stationary time series, a phenomenon encountered most often in practice by engineers, scientists and economists. It is always desirable to employ models which use parameters parsimoniously. Parsimony will be achieved by ARMA models because it has only finite number of parameters. Even though the discussion is primarily concerned with stationary time series, later we will take up the case of homogeneous non stationary time series which can be transformed to stationary time series. Time series models, obtained with the help of the present and past data is used for forecasting future values. Physical science as well as social science take benefits of forecasting models. The role of forecasting cuts across all fields of management-—finance, marketing, production, business economics, as also in signal process, communication engineering, chemical processes, electronics etc. This high applicability of time series is the motivation to this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the twentieth century, as technology grew with it. This resulted in collective efforts and thinking in the direction of controlling work related hazards and accidents. Thus, safety management developed and became an important part of industrial management. While considerable research has been reported on the topic of safety management in industries from various parts of the world, there is scarcity of literature from India. It is logical to think that a clear understanding of the critical safety management practices and their relationships with accident rates and management system certifications would help in the development and implementation of safety management systems. In the first phase of research, a set of six critical safety management practices has been identified based on a thorough review of the prescriptive, practitioner, conceptual and empirical literature. An instrument for measuring the level of practice of these safety conduction a survey using questionnaire in chemical/process industry. The instrument has been empirically validated using Confirmatory Factor Analysis (CFA) approach. As the second step. Predictive validity of safety management practices and the relationship between safety management practices and self-reported accident rates and management system certifications have been investigated using ANOVA. Results of the ANOVA tests show that there is significant difference in the identified safety management practices and the determinants of safety performance have been investigated using Multiple Regression Analysis. The inter-relationships between safety management practices, determinants of safety performance and components of safety performance have been investigated with the help of structural equation modeling. Further investigations into engineering and construction industries reveal that safety climate factors are not stable across industries. However, some factors are found to be common in industries irrespective of the type of industry. This study identifies the critical safety management practices in major accident hazard chemical/process industry from the perspective of employees and the findings empirically support the necessity for obtaining safety specific management system certifications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study is intended to provide a new scientific approach to the solution of the worlds cost engineering problems encountered in the chemical industries in our nation. The problem is that of cost estimation of equipments especially of pressure vessels when setting up chemical industries .The present study attempts to develop a model for such cost estimation. This in turn is hoped would go a long way to solve this and related problems in forecasting the cost of setting up chemical plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this modern complex world, stress at work is found to be increasingly a common feature in day to day life. For the same reason, job stress is one of the active areas in occupational health and safety research for over last four decades and is continuing to attract researchers in academia and industry. Job stress in process industries is of concern due to its influence on process safety, and worker‘s safety and health. Safety in process (chemical and nuclear material) industry is of paramount importance, especially in a thickly populated country like India. Stress at job is the main vector in inducing work related musculoskeletal disorders which in turn can affect the worker health and safety in process industries. In view of the above, the process industries should try to minimize the job stress in workers to ensure a safe and healthy working climate for the industry and the worker. This research is mainly aimed at assessing the influence of job stress in inducing work related musculoskeletal disorders in chemical process industries in India

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites.