5 resultados para Dyadic analysis (Social sciences)

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study is important for the fact that it places the management dynamics of marine fisheries sector in the context of growing unrest of local communities over the emerging resource conflicts and degradation Economic crisis in small scale marine fisheries due to high operating cost continue to hinder the efforts towards conservation in many ways The migration of mechanized fleet as a response to profit maximization strategy of enterprises continues to be a threat to resource management Therefore this study explores how to revamp the small scale mechanized sector effectively and profitably to ensure rational allocation of resources The thesis attempts to examine how livelihood vulnerabilities of artisanal fish workers influence the crafting of management institutions Finally by combining insights of an institutional framework the study establishes the need for recognising the role of both formal and informal institutions in the management of marine fisheries in Kerala

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study makes an attempt to examine the inter regional variations in Kerala in economic development with respect to the important indicators of development over the period 1971 to 2001. The study takes districts as the unit of analysis because this is an attempt to find out the status of districts in Kerala.The study proved that there exists inter district disparities in economic development measured in terms of different indices used for analysis.. statistical estimation of variation proves that there is high degree of variation in industrial sector followed by social and economic infrastructure. The composite index of industrial development shows that the highest index is 1.395 which is five times greater than that of the lowest index 0.273. More or less the same pattern of differences are noticed in most of the indicators of the development. A ranking of the district on the basis of the overall development indicators shows that Malappuram is the least developed district in Kerala. In case of almost all indicators of development Malappuram is lagging behind all other districts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information communication technology (IC T) has invariably brought about fundamental changes in the way in which libraries gather. preserve and disseminate information. The study was carried out with an aim to estimate and compare the information seeking behaviour (ISB) of the academics of two prominent universities of Kerala in the context of advancements achieved through ICT. The study was motivated by the fast changing scenario of libraries with the proliferation of many high tech products and services. The main purpose of the study was to identify the chief source of information of the academics, and also to examine academics preference upon the form and format of information source. The study also tries to estimate the adequacy of the resources and services currently provided by the libraries.The questionnaire was the central instrument for data collection. An almost census method was adopted for data collection engaging various methods and tools for eliciting data.The total population of the study was 957, out of which questionnaire was distributed to 859 academics. 646 academics responded to the survey, of which 564 of them were sound responses. Data was coded and analysed using Statistical Package for Social Sciences (SPSS) software and also with the help of Microsofl Excel package. Various statistical techniques were engaged to analyse data. A paradigm shift is evident by the fact that academies push themselves towards information in internet i.e. they prefer electronic source to traditional source and the very shift is coupled itself with e-seeking of information. The study reveals that ISB of the academics is influenced priman'ly by personal factors and comparative analysis shows that the ISB ofthc academics is similar in both universities. The productivity of the academics was tested to dig up any relation with respect to their ISB, and it is found that productivity of the academics is extensively related with their ISB. Study also reveals that the users ofthe library are satisfied with the services provided but not with the sources and in conjunction, study also recommends ways and means to improve the existing library system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Econometrics is a young science. It developed during the twentieth century in the mid-1930’s, primarily after the World War II. Econometrics is the unification of statistical analysis, economic theory and mathematics. The history of econometrics can be traced to the use of statistical and mathematics analysis in economics. The most prominent contributions during the initial period can be seen in the works of Tinbergen and Frisch, and also that of Haavelmo in the 1940's through the mid 1950's. Right from the rudimentary application of statistics to economic data, like the use of laws of error through the development of least squares by Legendre, Laplace, and Gauss, the discipline of econometrics has later on witnessed the applied works done by Edge worth and Mitchell. A very significant mile stone in its evolution has been the work of Tinbergen, Frisch, and Haavelmo in their development of multiple regression and correlation analysis. They used these techniques to test different economic theories using time series data. In spite of the fact that some predictions based on econometric methodology might have gone wrong, the sound scientific nature of the discipline cannot be ignored by anyone. This is reflected in the economic rationale underlying any econometric model, statistical and mathematical reasoning for the various inferences drawn etc. The relevance of econometrics as an academic discipline assumes high significance in the above context. Because of the inter-disciplinary nature of econometrics (which is a unification of Economics, Statistics and Mathematics), the subject can be taught at all these broad areas, not-withstanding the fact that most often Economics students alone are offered this subject as those of other disciplines might not have adequate Economics background to understand the subject. In fact, even for technical courses (like Engineering), business management courses (like MBA), professional accountancy courses etc. econometrics is quite relevant. More relevant is the case of research students of various social sciences, commerce and management. In the ongoing scenario of globalization and economic deregulation, there is the need to give added thrust to the academic discipline of econometrics in higher education, across various social science streams, commerce, management, professional accountancy etc. Accordingly, the analytical ability of the students can be sharpened and their ability to look into the socio-economic problems with a mathematical approach can be improved, and enabling them to derive scientific inferences and solutions to such problems. The utmost significance of hands-own practical training on the use of computer-based econometric packages, especially at the post-graduate and research levels need to be pointed out here. Mere learning of the econometric methodology or the underlying theories alone would not have much practical utility for the students in their future career, whether in academics, industry, or in practice This paper seeks to trace the historical development of econometrics and study the current status of econometrics as an academic discipline in higher education. Besides, the paper looks into the problems faced by the teachers in teaching econometrics, and those of students in learning the subject including effective application of the methodology in real life situations. Accordingly, the paper offers some meaningful suggestions for effective teaching of econometrics in higher education

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of using information available from one variable X to make inferenceabout another Y is classical in many physical and social sciences. In statistics this isoften done via regression analysis where mean response is used to model the data. Onestipulates the model Y = µ(X) +ɛ. Here µ(X) is the mean response at the predictor variable value X = x, and ɛ = Y - µ(X) is the error. In classical regression analysis, both (X; Y ) are observable and one then proceeds to make inference about the mean response function µ(X). In practice there are numerous examples where X is not available, but a variable Z is observed which provides an estimate of X. As an example, consider the herbicidestudy of Rudemo, et al. [3] in which a nominal measured amount Z of herbicide was applied to a plant but the actual amount absorbed by the plant X is unobservable. As another example, from Wang [5], an epidemiologist studies the severity of a lung disease, Y , among the residents in a city in relation to the amount of certain air pollutants. The amount of the air pollutants Z can be measured at certain observation stations in the city, but the actual exposure of the residents to the pollutants, X, is unobservable and may vary randomly from the Z-values. In both cases X = Z+error: This is the so called Berkson measurement error model.In more classical measurement error model one observes an unbiased estimator W of X and stipulates the relation W = X + error: An example of this model occurs when assessing effect of nutrition X on a disease. Measuring nutrition intake precisely within 24 hours is almost impossible. There are many similar examples in agricultural or medical studies, see e.g., Carroll, Ruppert and Stefanski [1] and Fuller [2], , among others. In this talk we shall address the question of fitting a parametric model to the re-gression function µ(X) in the Berkson measurement error model: Y = µ(X) + ɛ; X = Z + η; where η and ɛ are random errors with E(ɛ) = 0, X and η are d-dimensional, and Z is the observable d-dimensional r.v.