9 resultados para Duncan-Peters, Stephanie, 1953-
em Cochin University of Science
Resumo:
Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology
Resumo:
Dept.of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology
Resumo:
The present work is a base line attempt to investigate and assess the toxicities of three surfactants viz. anionic sodium dodecyl sulfate (SDS), non ionic Triton X-1OO (TX-IOO) and cationic cetyl trimethyl ammonium bromide (CTAB). These compounds represent simple members of the often neglected group of aquatic pollutants i.e. the anionic alkyl sulfates, non ionics and the cationics. These compounds are widely used In plastic industry, pesticide/herbicide formulations, detergents, oil spill dispersants, molluscicides etc. The test organisms selected for the present study are the cyanobacterium Synechocystis salina Wislouch representing a primary producer in the marine environment and a fresh water adapted euryhaline teleost Oreochromis mossambicus (peters) at the consumer level of the ecological pyramid. The fish species, though not indigenous to our country, is now found ubiquitously in fresh water systems and estuaries. Also it is highly resistant to pollutants and has been suggested as an indicator of pollution in tropical region .
Resumo:
Dept.of Marine Biology,Microbiology & Biochemistry,Cochin University of Science and Technology
Resumo:
Man uses a variety of synthetic material for his comfortable materialistic life. Thus human interactions may become harmful for various terrestrial and aquatic lives. This is by contaminating their habitat and by becoming a threat to organisms itself. Thus the application and dispersal of several organic pollutants can lead to the development of several mutated forms of the species when exposed to sublethal concentrations of the pollutants. Otherwise, a decrease in number or extinction of these exposed species from earth's face may happen. Pesticides, we use for the benefit of crop yield, but its persistence may become havoc to non-target organism. Pesticides reaching a reservoir can subsequently enter the higher trophic levels. Organophosphorus compounds have replaced all other pesticides, due to its acute toxicity and non-persistent nature.Hence the present study has concentrated on the toxicity of the largest market-selling and multipurpose pesticide, chlorpyrifos on the commonly edible aquatic organism, fish. The euryhaline cichlid Oreochromis mossambicus was selected as animal model. The study has concentrated on investigating biochemical parameters like tissue-specific enzymes, antioxidant and lipid-peroxidation parameters, haematological and histological observations and pesticide residue analysis.Major findings of this work have indicated the possibility of aquatic toxicity to the fish on exposure to the insecticide chlorpyrifos. The insecticide was found as effective to induce structural alteration, depletion in protein content, decrease in different metabolic enzyme levels and to progress lipid peroxidation on a prolonged exposure of 21 days. The ion-transport mechanism was found to be adversely affected. Electrophoretic analysis revealed the disappearance of several protein bands after 21days of exposure to chlorpyrifos. Residue, analysis by gas chromatography explored the levels of chlorpyrifos retaining on the edible tissue portions during exposure period of 21days and also on a recovery period of 10 days.
Resumo:
The present study dealt with the haematological, biochemical and istopathological impacts of different sub lethal concentrations of ethanol on a euryhaline teleost Oreochromis In05.s‘ambicu.5' (Peters).Studies carried out using GC indicated an increase in blood ethanol oncentration of the fish which mainly arose due to fishes entering into a state of hypoxia which explains ethanol production as an ubiquitous “anaerobic” end product, which gets accumulated whenever metabolic demand exceeds the mitochondrial oxidative potential. The very low amount of ethanol detected in the control group ofO mossambicns was mainly due to the activity of microorganisms in the gut ofO. Nzossambicus.Oedcma observed in the present study, is a defense mechanism that reduces the branchial superficial area of the fish which comes in contact with the external milieu. These mechanisms also increase the diffusion barrier to the pollutant. Dilation of the blood vessels is due to increased permeability helping in the free passage of ethanol into the blood stream. Telangiectasis observed explains the state of asphyxia of the fish when subjected to ethanol toxicity indicating acute respiratory distress. Gill aneurysm observed indicates impaired respiratory function. This is related to the rupture of the pillar cells which results in an increased blood flow inside the lamellae, causing dilation of the blood vessel or even aneurysm of gill.The present findings warrant future studies to explore A'T'Pases as possible biomarkers of pollutant exposure in ecotoxicology. This study indicated that O. mossambicus when exposed for 7 and 21 days to ethanol was under tremendous stress and parameters employed in this study can be adapted for future investigations as biomarkers of damage caused by ethanol to aquatic organisms. The present study revealed that O. mossambicus is sensitive to sub lethal concentrations of ethanol.
Resumo:
The present work is a base—|ine attempt to investigate and assess the toxicity of water-accommodated fractions (WAF) of Bombay High crude oil. The experimental animal selected for the present study is a euryhaline teleost, Oreochromis mossambicus (Peters), adapted to fresh water. The fish has been selected on account of its economic valve, abundant availability, experimental feasibility, ease of rearing and maintenance and also because it is one of the commonly cultured species in the South-East Asian countries.
Resumo:
In the present investigation, three important stressors: cadmium ion (Cd++), salinity and temperature were selected to study their effects on protein and purine catabolism of O. mossambicus. Cadmium (Cd) is a biologically nonessential metal that can be toxic to aquatic animals. Cadmium is a trace element which is a common constituent of industrial effluents. It is a non-nutrient metal and toxic to fish even at low concentrations. Cadmium ions accumulate in sensitive organs like gills, liver, and kidney of fish in an unregulated manner . Thus; the toxic effects of cadmium are related to changes in natural physiological and biochemical processes in organism. The mechanics of osmoregulation (i.e. total solute and water regulation) are reasonably well understood (Evans, 1984, 1993), and most researchers agree that salinities that differ from the internal osmotic concentration of the fish must impose energetic regulatory costs for active ion transport. There is limited information on protein and purine catabolism of euryhaline fish during salinity adaptation. Within a range of non-lethal temperatures, fishes are generally able to cope with gradual temperature changes that are common in natural systems. However, rapid increases or decreases in ambient temperature may result in sub lethal physiological and behavioral responses. The catabolic pathways of proteins and purines are important biochemical processes. The results obtained signifies that O. mossambicus when exposed to different levels of cadmium ion, salinity and temperature show great variation in the catabolism of proteins and purines. The organism is trying to attain homeostasis in the presence of stressors by increasing or decreasing the activity of certain enzymes. The present study revealed that the protein and purine catabolism in O. mossambicus is sensitive to environmental stressors.