16 resultados para Dopamine receptor antagonist
em Cochin University of Science
Resumo:
Diabetes Mellitus is a metabolic disorder associated with insulin deficiency, which not.only affects the carbohydrate metabolism but also is associated with various central and peripheral complications. Chronic hyperglycemia during diabetes mellitus is a major initiator of diabetic microvascular complications like retinopathy, neuropathy, The central nervous system (CNS) neurotransmitters play an important role in the regulation of glucose homeostasis. These neurotransmitters mediate rapid intracellular communications not only within the central nervous system but also in the peripheral tissues. They exert their function through receptors present in both neuronal and non neuronal cell surface that trigger second messenger signaling pathways. Dopamine is a neurotransmitter that has been implicated in various central neuronal degenerative disorders like Parkinson's disease and behavioral diseases like Schizophrenia. Dopamine is synthesised from tyrosine, stored in vesicles in axon terminals and released when the neuron is depolarised. Dopamine interacts with specific membrane receptors to produce its effect. Dopamine plays an important role both centrally and peripherally. The recent identification of five dopamine receptor subtypes provides a basis for understanding dopamine's central and peripheral actions . Dopamine receptors are classified into two major groups : DA D1 like and DA D2 like. Dopamine D1 like receptors consists of DA D1 and DA D5 receptors . Dopamine D2 like receptors consists of DA D2, DA D3 and DA D4 receptors. Stimulation of the DA D1 receptor gives rise to increased production of cAMP. Dopamine D2 receptors inhibit cAMP production, but activate the inositol phosphate second messenger system . Impairment of central dopamine neurotransmission causes muscle rigidity, hormonal regulation , thought disorder and cocaine addiction. Peripheral dopamine receptors mediate changes in blood flow, glomerular filtration rate, sodium excretion and catecholamine release. The dopamine D2 receptors increased in the corpus striatum and cerebral cortex but decreased in the hypothalamus and brain stem indicating their involvement in regulating insulin secretion. Dopamine D2 receptor which has a stimulatory effecton insulin secretion decreased in the pancreatic islets during diabetes. Our in vitro studies confirmed the stimulatory role of dopamine D2 receptors in stimulation of glucose induced insulin secretion. A detailed study at the molecular level on the mechanisms involved in the role of dopamine in insulin secretion, its functional modification could lead to therapeutic interventions that will have immense clinical importance.
Resumo:
In the present study, the effects of 5-HT, GABA and Bone Marrow Cells infused intranigrally to substantia nigra individually and in combinations on unilateral rotenone infused Parkinsonism induced rats. Scatchard analysis of DA, DA D1 and D2 receptors in the corpus striatum, cerebral cortex, cerebellum, brain stem and hippocampus showed a significant increase in the Brain regions of rotenone infused rat compared to control. Real Time PCR amplification of DA D1, D2, Bax and ubiquitin carboxy-terminal hydrolase were up regulated in the brain regions of rotenone infused rats compared to control. Gene expression studies of -Synuclien, cGMP and Cyclic AMP response element-binding protein showed a significant down regulation in Rotenone infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies.Our study demonstrated that BMC administration alone cannot reverse the above said molecular changes occurring in PD rat. 5-HT and GABA acting through their specific receptors in combination with bone marrow cells play a crucial role in the functional recovery of PD rats. 5-HT, GABA and Bone marrow cells treated PD rats showed significant reversal to control in DA receptor binding and gene expression. 5-HT and GABA have co-mitogenic property. Proliferation and differentiation of cells re-establishing the connections in Parkinson's disease facilitates the functional recovery. Thus, it is evident that 5-HT and GABA along with BMC to rotenone infused rats renders protection against oxidative, related motor and cognitive deficits which makes them clinically significant for cellbased therapy. The BMC transformed to neurons when co-transplanted with 5-HT and GABA which was confirmed with PKH2GL and nestin. These newly formed neurons have functional significance in the therapeutic recovery of Parkinson’s disease.
Resumo:
In the present work we studied the potential of Bacopa monnieri and Bacoside A treatment to enhance the antioxidant system and support the neuronal survival in the hypoglycemic neonatal brain. For achieving the aim, DAD1 and DAD2 receptors functional regulation, gene expression of growth factors, neuronal survival and apoptotic factors during insulin induced hypoglycemic neonatal brain in rats were studied.
Resumo:
Effect of L-prolyl-cinagta tlheep spyo atenndt idaol paanmti-iPnaer/nkeinusroonleiapnti cp rreocpeeprttoiers b oifn dLi-npgrso.lyPl E-LP-TleIuDcEylS- g2l(y1c)Li n1-a0lem5u-ic1dy1el1-g,(Ply1Lc9iG8n1)a. mw-Taidhsee i nm(vPeeLcstGhiag) anotinesmd n ie onuf rb oaelchetapiovtinico -suuirnbadslu eacrnevddetnarflefetueeacrrtmto a coephfnp ePtrmLe(2icGc0iaa, lob4 mnl0y io atndnhedevl sii8tn r0oto fem dndgosoi ppktyaag mm o-1fii nn tSeehCr/eng cteiwcau tfiracuolenle edpcptattiiioiclcny r r feienoscrp et ohfpinetvos erer ad ebtali.iyncAsdit)cienusdgit ge bin nyai dfrhimacaatli nonsttpilrseytirar aiatdtuttoimeolnn u(a3aso tmfde PidgfL f hkeGargel -o(n'p2tI0ieaPr ali)ldn.y odB ll ay4-b 0icne omldlneugtdc rk eabgdsy t - c1,aa pcSthoaCrmleo)ponfrsaicypil .heP TidLn hteGoe pahnidn esp tior odpoepraimdoinl ew raesc aelpstoo ersx ainm tihnee dst.rPiaLtuGm s,elbeuctt ihvaedly n eon ehfafneccte don t h['eH a]ffsipniirtoyp oefr tidhoel sbpiencdifinicg .b Tinhdei nbge hoafv aigouonraislt an[3dH b] iaopcohmemori-- cal results obtained in the present study raise the possibility that PLG may facilitate nigro-striatal dopaminergic neurotransmission through interacting with a unique PLG receptor functionally coupled to the dopamine receptor cyclase complex. -adenylate
Resumo:
Dopamine D2 receptors are involved in ethanol self- administration behavior and also suggested to mediate the onset and offset of ethanol drinking. In the present study, we investigated dopamine (DA) content and Dopamine D2 (DA D2) receptors in the hypothalamus and corpus striatum of ethanol treated rats and aldehyde dehydrogenase (ALDH) activity in the liver and plasma of ethanol treated rats and in vitro hepatocyte cultures. Hypothalamic and corpus striatal DA content decreased significantly (P\0.05, P\0.001 respectively) and homovanillic acid/ dopamine (HVA/DA) ratio increased significantly (P\0.001) in ethanol treated rats when compared to control. Scatchard analysis of [3H] YM-09151-2 binding to DA D2 receptors in hypothalamus showed a significant increase (P\0.001) in Bmax without any change in Kd in ethanol treated rats compared to control. The Kd of DA D2 receptors significantly decreased (P\0.05) in the corpus striatum of ethanol treated rats when compared to control. DA D2 receptor affinity in the hypothalamus and corpus striatum of control and ethanol treated rats fitted to a single site model with unity as Hill slope value. The in vitro studies on hepatocyte cultures showed that 10-5 M and 10-7 M DA can reverse the increased ALDH activity in 10% ethanol treated cells to near control level. Sulpiride, an antagonist of DA D2, reversed the effect of dopamine on 10% ethanol induced ALDH activity in hepatocytes. Our results showed a decreased dopamine concentration with enhanced DA D2 receptors in the hypothalamus and corpus striatum of ethanol treated rats. Also, increased ALDH was observed in the plasma and liver of ethanol treated rats and in vitro hepatocyte cultures with 10% ethanol as a compensatory mechanism for increased aldehyde production due to increased dopamine metabolism. A decrease in dopamine concentration in major brain regions is coupled with an increase in ALDH activity in liver and plasma, which contributes to the tendency for alcoholism. Since the administration of 10-5 M and 10-7 M DA can reverse the increased ALDH activity in ethanol treated cells to near control level, this has therapeutic application to correct ethanol addicts from addiction due to allergic reaction observed in aldehyde accumulation.
Resumo:
Department of Biotechnology, Cochin University of Science and Technology
Resumo:
The present study deals with the differential regulation of Dopamine content in pancreas and functional regulation of Dopamine D2 receptor in brain regions such as hypothalamus, brain stem, cerebral cortex and corpus striatum play an important role during pancreatic islets cell proliferation and insulin secretion. Though may reports are there implicating the functional interaction between DA receptor and pancreatic islets cell insulin secretion, the involvement of specific DA D2 receptors and changes in second messenger system during insulin secretion and pancreatic islets cell proliferation were not given emphasis. Down regulation of DA content in brain regions and pancreatic islets were observed during pancreatic regeneration. Up regulation of DA content in plasma and adrenals down regulated sympathetic activity in pancreas which cause an increase in insulin secretion and pancreatic islets cell proliferation during pancreatic regeneration. There was a differential regulation of DA D2 receptor in brain regions. The pancreatic islets DA D2 receptors were lip regulated during pancreatic regeneration. DA D2 receptor activation at specific concentration has accounted for increased pancreatic islets cell proliferation. In vitro experiments have proved the differential regulation of DA on insulin synthesis and pancreatic islets cell proliferation. Inhibitory effect of DA on cAMP and stimulatory effect of DA on IP3 through DA D2 receptors were observed in in vitro cell culture system. These effects are correlating with the DA, cAMP and IP3 content during pancreatic regeneration and islets cell proliferation. Up regulation of intracellular Ca2+ was also observed at 10-8 M DA, a specific concentration of DA which showed maximum increase of IP3 content in pancreatic islets through DA D2 receptor activation in in vitro culture. These in vitro data was highly correlating with the changes in DA, cAMP and IP3 content in pancreas during pancreatic regeneration and insulin secretion. Thus we conclude that there is a differential functional regulation of DA and DA D2 receptors in brain and pancreas during pancreatic regeneration. In vitro studies confirmed a concentration depend functional regulation of DA through DA D2 receptors on pancreatic islets cell proliferation and insulin secretion mediated through increased cAMP, IP3 and intracellular Ca2+ level. This will have immense clinical significance in the management in diabetes mellitus.
Resumo:
In the present study a detailed investigation on the alterations of dopamine and its receptors in the brain regions of streptozotocin induced diabetic and insulin induced hypoglycaemic rats were carried out. Glutamate receptor, NMDARI gene expression in the hypoglycaemic and hyperglycaemic brain was also studied. EEG recording in hypoglycaemic and hyperglycaemic will be carried out to measure brain activity. in vitro studies on glucose uptake and insulin secretion, with and without specific antagonists were carried out to confirm the specific receptor subtypes - DA D1, DA D2 and NMDA involved in the functional regulation during hyperglycaemic and hypoglycaemic brain damage. The molecular studies on the brain damage through dopaminergic and glutamergic receptors will elucidate the therapeutic role in the corrective measures of the damage to the brain during hypoglycaemia and hyperglycaemia. This has importance in the management of diabetes and antidiabetic treatment for better intellectual functioning of the individual.
Resumo:
Neuronal dopamine and serotonin receptors are widely distributed in the central and the peripheral nervous systems at different levels. Dopaminergic and serotonergic systems have crucial role in aldehyde dehydrogenase regulation Stimulation of autonomic nervous system during ethanol treatment is suggested to be an important factor in regulating the ALDH function. The ALDH enzyme activity was increased in plasma, cerebral cortex, and liver but decreased in cerebellum. The ALDH enzyme affinity was decreased in plasma, brainstem and liver and increased in cerebral cortex and cerebellum. Dopamine and serotonin content decreased in liver and brain regions - cerebral cortex, corpus striatum of ethanol treated rats with an increased HVA/DA, 5-HIAA/5-HT tumover rate. Dopamine content decreased in brainstem with an increased HVA/DA turnover rate and serotonin content decreased with an increased 5-HIAA/5-HT turnover rate in the brainstem of ethanol treated rats compared to control. Serotonin content increased in hypothalamus with a decreased 5-HIAA/5—HT turnover rate where as dopamine content decreased in hypothalamus with an increased HVA/DA tumover rate of ethanol treated rats compared to control.alterations of DA D2 and 5-HTQA receptor function and gene expression in the cerebellum, hypothalamus, corpus striatum, cerebral cortex play an important role in the sympathetic regulation of ALDH enzyme in ethanol addiction. There is a serotonergic and dopaminergic functional regulation of ALDH activity in the brain regions and liver of ethanol treated rats. Gene expression studies of DA D2 and 5'HT2A studies confirm these observations. Perfusion studies using DA, 5-HT and glucose showed ALDH regulatory function. Brain activity measeurement using EEG showed a prominentfrontal brain wave difference. This will have immense clinical significance in the management of ethanol addiction.
Resumo:
Parasympathetic system plays an important role in insulin secretion from the pancreas. Cholinergic effect on pancreatic beta cells exerts primarily through muscarinic receptors. In the present study we investigated the specific role of muscarinic M1 and M3 receptors in glucose induced insulin secretion from rat pancreatic islets in vitro. The involvement of muscarinic receptors was studied using the antagonist atropine. The role of muscarinic MI and M3 receptor subtypes was studied using subtype specific antagonists. Acetylcholine agonist, carbachol, stimulated glucose induced insulin secretion at low concentrations (10-8-10-5 M) with a maximum stimulation at 10-7 M concentration. Carbachol-stimulated insulin secretion was inhibited by atropine confirming the role of muscarinic receptors in cholinergic induced insulin secretion. Both M1 and M3 receptor antagonists blocked insulin secretion induced by carbachol. The results show that M3 receptors are functionally more prominent at 20 mM glucose concentration when compared to MI receptors. Our studies suggest that muscarinic M1 and M3 receptors function differentially regulate glucose induced insulin secretion, which has clinical significance in glucose homeostasis.
Resumo:
In the present study dopamine was measured in the hypothalamus, brainstem, pancreatic islets and plasma, using HPLC. Dopamine D2 receptor changes in the hypothalamus, brainstem and pancreatic islets were studied using [3H] YM-09151-2 in streptozotocin-induced diabetic and insulintreated diabetic rats. There was a significant decrease in dopatnine content in the hypothalamus (P<0.001), brainstem (P<0.001), pancreatic islets (P<0.001) and plasma (P<0.00I) in diabetic rats when compared to control. Scatchard analysis of [3H] YM-09151-2 in the hypothalamus of diabetic rats showed a significant decrease in Bax (P<0.001) and Kd, showing an increased affinity of D2 receptors when compared to control. Insulin treatment did not completely reverse the changes that occurred during diabetes. There was a significant decrease in B,nax (P<0.01) with decreased affinity in the brainstem of diabetic rats. The islet membrane preparation of diabetic rats showed a significant decrease (P<0.001) in the binding of [3H] YM-09 151-2 with decreased Kd (P<0.001) compared to control. The increase in affinity of D2 receptors in hypothalamus and pancreatic islets and the decreased affinity in brainstem were confirmed by competition analysis. Thus our results suggest that the decreased dopamine D, receptor function in the hypothalamus, brainstem and pancreas affects insulin secretion in diabetic rats, which has immense clinical relevance to the management of diabetes.
Resumo:
5-HT2A receptor binding parameters were studied in the cerebral cortex and brain stem of control, diabetic, insulin, insulin + tryptophan and tr3yptophan treated streptozotocin diabetic rats. Scatchard analysis using selective antagonist, [-H](±)2,3-dimethoxyphenyl-l-[2-(4-piperidine)- methanol] ([3H]MDL100907) in cerebral cortex of diabetic rats showed a significant decrease in dissociation constant (Kd) without any change in maximal binding (Bm). Competition binding studies in cerebral cortex using ketanserin against [3H]MDL100907 showed the appearance of an additional site in the low affinity region during diabetes. In the brain stem, Scatchard analysis showed a significant increase in Bmax and Kd. Displacement studies showed a shift in the receptor affinity towards a low affinity state. All these altered parameters in diabetes were reversed to control level by insulin, insulin + tryptophan and tryptophan treatments. Tryptophan treatment is suggested to reverse the altered 5-HT2Abinding and blood glucose level to control status by increasing the brain 5-HT content.
Resumo:
The stimulatory effect of dopamine through dopamine 1)2 receptor on glucose - induced insulin secretion was studied in the pancreatic islets in nitro. I)oparnilie signifieanlly stimula(ed insulin secretion at a concentration of 10 a N1 in the presence of high,glucose ( 20 nii1 ). ' fhe higher concentrations of dopamine (111 -1() 4) inhibited glucose- induced insulin secretion in the presence of both 4 mM1 and 20 m M glucose. Stimulatory and inhibitory effect of dopamine on glucose - induced insulin secretion was reverted by the addition of dopamine 1)2 receptor antagonists such as butaclamol and sulpiride . Norepinephrine (NE) at 111 4 11 concentration inhibited the dopamine uptake as well as its stimulatory effect at 11) - 8 IN1 concentration on glucose induced insulin secretion. Our results suggest that dopamine exerts a differential effect on glucose -induced insulin secretion through dopamine D2 receptor and it is essential for the regulation of glucose-induced insulin secretion by pancreatic islets.
Resumo:
The high-affinity bindings of [3H]-5-hydroxytryptamine to serotonin S-1 receptors, [3H]-ketanserin to serotonin S-2 receptors in the cerebral cortex, [3H]- fluphenazine to dopamine D-1 receptors, and [3H]-spiroperidol to dopamine D-2 receptors in the corpus striatum were studied in pyridoxine-deficient rats and compared to pyridoxine-supplemented controls. There was a significant increase in the maximal binding (Bmax) of serotonin S-1 and S-2 receptors with a significant decrease in their binding affinities (Kd). However, there were no significant changes either in the maximal binding or binding affinity of striatal dopamine D- 1 and D-2 receptors. Receptor sensitivity seems to correlate negatively with the corresponding neurotransmitter concentrations in the pyridoxine-deficient rats.