11 resultados para Direct Strength Method and Experiments

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present studies it is clear that Bacillus pumilus xylanase is having the characteristic suited for an industrial enzyme (xylanases that are active and stable at elevated temperatures and alkaline pH are needed). SSF production of xylanases and its application appears to be an innovative technology where the fermented substrate is the enzyme source that is used directly in the bleaching process without a prior downstream processing. The direct use of SSF enzymes in bleaching is a relatively new biobleaching approach. This can certainly benefit the bleaching process to lower the xylanase production costs and improve the economics and viability of the biobleaching technology. The application of enzymes to the bleaching process has been considered as an environmentally friendly approach that can reduce the negative impact on the environment exerted by the use of chlorine-based bleaching agents. It has been demonstrated that pretreatment of kraft pulp with xylanase prior to bleaching (biobleaching) can facilitate subsequent removal of lignin by bleaching chemicals, thereby, reducing the demand for elemental chlorine or improving final paper brightness. Using this xylanase pre-treatment, has resulted in an increased of brightness (8.5 Unit) when compared to non-enzymatic treated bleached pulp prepared using identical conditions. Reduction of the consumption of active chlorine can be achieved which results in a decrease in the toxicity, colour, chloride and absorbable organic halogen (AOX) levels of bleaching effluents. The xylanase treatment improves drainage, strength properties and the fragility of pulps, and also increases the brightness of pulps. This positive result shows that enzyme pre-treatment facilitates the removal of chromophore fragments of pulp there by making the process more environment friendly

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on the modification of the commonly used thermoplastics, polypropylene and polystyrene using nanosilica preparcd from a cheap source of sodium silicate. Melt compounding technique has been used for nanocomposite preparation as it is simple and suited to injection moulding. Nanosilica in a polymer matrix provide significant enhancement in strength, stiffness and impact strength. Incorporation of silica particles in a polymer also improves its thennal stability. To achieve better dispersion of fillers in polymer matrices the mixing was done at different shear rates. The enhancement in material properties indicates that at higher shear rates there is greater interaction between particles and the matrix and it depends on filler concentration and type of polymer used. N anosilica is a useful filler in thennoplastic polymers and has been applied in automotive applications, electronic appliances and consumer goods.This thesis is divided into six chapters. General introduction to the topic is described in chapter 1. Salient features of polymer nanocomposites, their synthesis, properties and applications are presented. A review of relevant literature and the scope and objectives are also mentioned in this chapter.The materials used and the vanous experimental method and techniques employed in the study are described in chapter 2. Preparation of nanocomposites by melt blending using Thenno Haake Rheocord, preparation of samples, evaluation of mechanical and thennal properties using UTM, Impact testing and characterization using DMA, TGA and DSC and morphology by SEM are described.The preparation of nanosilica from a laboratory scale to a pilot plant scale is described in chapter 3. Generation of surface modified silica, evaluation of kinetic parameters of the synthesis reaction, scale up of the reactor and modeling of the reactor are also dealt with in this chapter.The modification of the commodity thennoplastic, Polypropylene using nanosilica is described in chapter 4. Preparation of PP/silica nanocomposites, evaluation of mechanical properties, thermal and crystallization characteristics, water absorption and ageing resistance studies are also presented.The modification of Polystyrene using synthesized nanosilica IS described in chapter 5. The method of preparation of PS/silica nanocomposites, evaluation of mechanical properties (static and dynamic), thermal properties melt flow characteristics using Haake Rheocord, water absorption and ageing resistance of these nanocomposites are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing tempo of construction activity the world over creates heavy pressure on existing land space. The quest for new and competent site often points to the needs for improving existing sites, which are otherwise deemed unsuitable for adopting conventional foundations. This is accomplished by ground improvement methods, which are employed to improve the quality of soil incompetent in their natural state. Among the construction activities, a well-connected road network is one of the basic infrastructure requirements, which play a vital role for the fast and comfortable movement of inter- regional traffic in countries like India.One of the innovative ground improvement techniques practised all over the world is the use of geosynthetics, which include geotextiles, geomembranes, geogrids, etc . They offer the advantages such as space saving, enviromnental sensitivity, material availability, technical superiority, higher cost savings, less construction time, etc . Because of its fundamental properties, such as tensile strength, filtering and water permeability, a geotextile inserted between the base material and sub grade can function as reinforcement, a filter medium, a separation layer and as a drainage medium. Though polymeric geotextiles are used in abundant quantities, the use of natural geotextiles (like coir, jute, etc.) has yet to get momentum. This is primarily due to the lack of research work on natural geotextilcs for ground improvement, particularly in the areas of un paved roads. Coir geotextiles are best suited for low cost applications because of its availability at low prices compared to its synthetic counterparts. The proper utilisation of coir geotextilcs in various applications demands large quantities of the product, which in turn can create a boom in the coir industry. The present study aims at exploring the possibilities of utilising coir geotextiles for unpaved roads and embankments.The properties of coir geotextiles used have been evaluated. The properties studied include mass per unit area, puncture resistance, tensile strength, secant modulus, etc . The interfacial friction between soils and three types of coir geotextiles used was also evaluated. It was found that though the parameters evaluated for coir geotextiles have low values compared to polymeric geotextiles, the former are sufficient for use in unpaved roads and embankments. The frictional characteristics of coir geotextile - soil interfaces are extremely good and satisfy the condition set by the International Geosynthetic Society for varied applications.The performance of coir geotextiles reinforced subgrade was studied by conducting California Bearing Ratio (CBR) tests. Studies were made with coir geotextiles placed at different levels and also in multiple layers. The results have shown that the coir geotextile enhances the subgrade strength. A regression analysis was perfonned and a mathematical model was developed to predict the CBR of the coir geotextile reinforced subgrade soil as a function of the soil properties, coir geotextile properties, and placement depth of reinforcement.The effects of coir geotextiles on bearing capacity were studied by perfonning plate load tests in a test tan1e This helped to understand the functioning of geotextile as reinforcement in unpaved roads and embankments. The perfonnance of different types of coir geotextiles with respect to the placement depth in dry and saturated conditions was studied. The results revealed that the bearing capacity of coir-reinforced soil is increasing irrespective of the type of coir geotextiles and saturation condition.The rut behaviour of unreinforced and coir reinforced unpaved road sections were compared by conducting model static load tests in a test tank and also under repetitive loads in a wheel track test facility. The results showed that coir geotextiles could fulfill the functions as reinforcement and as a separator, both under static and repetitive loads. The rut depth was very much reduced whik placing coir geotextiles in between sub grade and sub base.In order to study the use of Coir geotextiles in improving the settlement characteristics, two types of prefabricated COlf geotextile vertical drains were developed and their time - settlement behaviour were studied. Three different dispositions were tried. It was found that the coir geotextile drains were very effective in reducing consolidation time due to radial drainage. The circular drains in triangular disposition gave maximum beneficial effect.In long run, the degradation of coir geotextile is expected, which results in a soil - fibre matrix. Hence, studies pertaining to strength and compressibility characteristics of soil - coir fibre composites were conducted. Experiments were done using coir fibres having different aspect ratios and in different proportions. The results revealed that the strength of the soil was increased by 150% to 200% when mixed with 2% of fibre having approximately 12mm length, at all compaction conditions. Also, the coefficient of consolidation increased and compression index decreased with the addition of coir fibre.Typical design charts were prepared for the design of coir geotextile reinforced unpaved roads. Some illustrative examples are also given. The results demonstrated that a considerable saving in subase / base thickness can he achieved with the use of eoir geotextiles, which in turn, would save large quantities of natural aggregates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of urbanisation and consequent search for more and more habitable land, it was imperative that the large tracts of marine clays, considered inhabitable earlier, had to be reclaimed and developed. These marine clays, wellknown for its high compressibility and poor shear strength, posed numerous problems to the builders and Cochin was no exception. It is only less than a decade since active research work was initiated on marine clays in general and Cochin marine clays in particular. Eventhough some systematic studies are available on compressibility characteristics, attempts to study the shear strength aspects and development of techniques to improve it have been very limited. This work is an investigation on the consolidation and shear strength characteristics of Cochin marine clays including methods to improve the same

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine particles of barium ferrite (BaFe12O19) were synthesized by the conventional ceramic technique. These materials were then characterized by the X-ray diffraction method and incorporated in the natural rubber matrix according to a specific receipe for various loadings of ferrite. The rubber ferrite composites (RFC) thus obtained have several applications, and have the advantage of molding into complex shapes. For applications such as microwave absorbers, these composites should have an appropriate dielectric strength with the required mechanical and magnetic properties. The N330 (HAF) carbon black has been added to these RFCs for various loadings to modify the dielectric and mechanical properties. In this article we report the effect of carbon black on the mechanical and dielectric properties of these RFCs. Both the mechanical and dielectric properties can be enhanced by the addition of an appropriate amount of carbon black

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are  Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method.  Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications.  The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process.  Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process.  Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays.  The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification.  The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers.  Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs.  In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260  Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions.  For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia.  Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction.  SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials  In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis.  In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR.  In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis.  In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS.  Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261  Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties.  Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol.  Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol.  DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method.  DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.