10 resultados para Diode-laser

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is mainly concentrated on setting up a NIR tunable diode laser absorption (TDLA) spectrometer for high-resolution molecular spectroscopic studies. For successfully recording the high-resolution tunable diode laser spectrum, various experimental considerations are to be taken into account like the setup should be free from mechanical vibrations, sample should be kept at a low pressure, laser should be in a single mode operation etc. The present experimental set up considers all these factors. It is to be mentioned here that the setting up of a high resolution NIR TDLA spectrometer is a novel experiment requiring much effort and patience. The analysis of near infrared (NIR) vibrational overtone spectra of some substituted benzene compounds using local mode model forms another part of the present work. An attempt is made to record the pulsed laser induced fluorescence/Raman spectra of some organic compounds. A Q-switched Nd:YAG laser is used as the excitation source. A TRIAX monochromator and CCD detector is used for the spectral recording. The observed fluorescence emission for carbon disulphide is centered at 680 nm; this is assigned as due to the n, p* transition. Aniline also shows a broad fluorescence emission centered at 725 nm, which is due to the p,p* transition. The pulsed laser Raman spectra of some organic compounds are also recorded using the same experimental setup. The calibration of the set up is done using the laser Raman spectra of carbon tetrachloride and carbon disulphide. The observed laser Raman spectra for aniline, o-chloroaniline and m-chlorotoluene show peaks characteristics of the aromatic ring in common and the characteristics peaks due to the substitutuent groups. Some new peaks corresponding to low-lying vibrations of these molecules are also assigned

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Near-infrared spectroscopy can be a workhorse technique for materials analysis in industries such as agriculture, pharmaceuticals, chemicals and polymers. A near-infrared spectrum represents combination bands and overtone bands that are harmonics of absorption frequencies in the mid-infrared. Near-infrared absorption includes a combination-band region immediately adjacent to the mid-infrared and three overtone regions. All four near-infrared regions contain "echoes" of the fundamental mid-infrared absorptions. For example, vibrations in the mid-infrared due to the C-H stretches will produce four distinct bands in each of the overtone and combination regions. As the bands become more removed from the fundamental frequencies they become more widely separated from their neighbors, more broadened and are dramatically reduced in intensity. Because near-infrared bands are much less intense, more of the sample can be used to produce a spectra and with near-infrared, sample preparation activities are greatly reduced or eliminated so more of the sample can be utilized. In addition, long path lengths and the ability to sample through glass in the near-infrared allows samples to be measured in common media such as culture tubes, cuvettes and reaction bottles. This is unlike mid-infrared where very small amounts of a sample produce a strong spectrum; thus sample preparation techniques must be employed to limit the amount of the sample that interacts with the beam. In the present work we describe the successful the fabrication and calibration of a linear high resolution linear spectrometer using tunable diode laser and a 36 m path length cell and meuurement of a highly resolved structure of OH group in methanol in the transition region A v =3. We then analyse the NIR spectrum of certain aromatic molecules and study the substituent effects using local mode theory

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vibrational overtone spectroscopy of molecules containing X-H oscillators (X = C, N, O...) has become an effective tool for the study of molecular structure, dynamics, inter and intramolecular interactions, conformational aspects and substituent effects in aliphatic and aromatic compounds. In the present work, the author studied the NIR overtone spectra of some liquid phase organic compounds. The analysis of the CH, NH and OH overtones yielded important structural information about these systems. In an attempt to get information on electronic energy levels, we studied the pulsed Nd:YAG laser induced fluorescence spectra of certain organic compounds. The pulsed laser Raman spectra of some organic compounds are also studied. The novel high resolution technique of near infrared tunable diode laser absorption spectroscopy (TDLAS) is used to record the rotational structure of the second OH overtone spectrum of 2-propanol. The spectral features corresponding to the different molecular conformations could be identified from the high resolution spectrum. The whole work described in this thesis is divided into five chapters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dental caries persists to be the most predominant oral disease in spite of remarkable progress made during the past half- century to reduce its prevalence. Early diagnosis of carious lesions is an important factor in the prevention and management of dental caries. Conventional procedures for caries detection involve visual-tactile and radiographic examination, which is considered as “gold standard”. These techniques are subjective and are unable to detect the lesions until they are well advanced and involve about one-third of the thickness of enamel. Therefore, all these factors necessitate the need for the development of new techniques for early diagnosis of carious lesions. Researchers have been trying to develop various instruments based on optical spectroscopic techniques for detection of dental caries during the last two decades. These optical spectroscopic techniques facilitate noninvasive and real-time tissue characterization with reduced radiation exposure to patient, thereby improving the management of dental caries. Nonetheless, a costeffective optical system with adequate sensitivity and specificity for clinical use is still not realized and development of such a system is a challenging task.Two key techniques based on the optical properties of dental hard tissues are discussed in this current thesis, namely laser-induced fluorescence (LIF) and diffuse reflectance (DR) spectroscopy for detection of tooth caries and demineralization. The work described in this thesis is mainly of applied nature, focusing on the analysis of data from in vitro tooth samples and extending these results to diagnose dental caries in a clinical environment. The work mainly aims to improve and contribute to the contemporary research on fluorescence and diffuse reflectance for discriminating different stages of carious lesions. Towards this, a portable and compact laser-induced fluorescence and reflectance spectroscopic system (LIFRS) was developed for point monitoring of fluorescence and diffuse reflectance spectra from tooth samples. The LIFRS system uses either a 337 nm nitrogen laser or a 404 nm diode laser for the excitation of tooth autofluorescence and a white light source (tungsten halogen lamp) for measuring diffuse reflectance.Extensive in vitro studies were carried out on extracted tooth samples to test the applicability of LIFRS system for detecting dental caries, before being tested in a clinical environment. Both LIF and DR studies were performed for diagnosis of dental caries, but special emphasis was given for early detection and also to discriminate between different stages of carious lesions. Further the potential of LIFRS system in detecting demineralization and remineralization were also assessed.In the clinical trial on 105 patients, fluorescence reference standard (FRS) criteria was developed based on LIF spectral ratios (F500/F635 and F500/F680) to discriminate different stages of caries and for early detection of dental caries. The FRS ratio scatter plots developed showed better sensitivity and specificity as compared to clinical and radiographic examination, and the results were validated with the blindtests. Moreover, the LIF spectra were analyzed by curve-fitting using Gaussian spectral functions and the derived curve-fitted parameters such as peak position, Gaussian curve area, amplitude and width were found to be useful for distinguishing different stages of caries. In DR studies, a novel method was established based on DR ratios (R500/R700, R600/R700 and R650/R700) to detect dental caries with improved accuracy. Further the diagnostic accuracy of LIFRS system was evaluated in terms of sensitivity, specificity and area under the ROC curve. On the basis of these results, the LIFRS system was found useful as a valuable adjunct to the clinicians for detecting carious lesions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transparent diode heterojunction on ITO coated glass substrates was fabricated using p-type AgCoO2 and n-type ZnO films by pulsed laser deposition (PLD). The PLD of AgCoO2 thin films was carried out using the pelletized sintered target of AgCoO2 powder, which was synthesized in-house by the hydrothermal process. The band gap of these thin films was found to be ~3.89 eV and they had transmission of~55% in the visible spectral region. Although Hall measurements could only indicate mixed carrier type conduction but thermoelectric power measurements of Seebeck coefficient confirmed the p-type conductivity of the grown AgCoO2 films. The PLD grown ZnO films showed a band gap of ~3.28 eV, an average optical transmission of ~85% and n-type carrier density of~4.6×1019 cm− 3. The junction between p-AgCoO2 and n-ZnO was found to be rectifying. The ratio of forward current to the reverse current was about 7 at 1.5 V. The diode ideality factor was much greater than 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.