6 resultados para Diode pumping
em Cochin University of Science
Resumo:
Transparent diode heterojunction on ITO coated glass substrates was fabricated using p-type AgCoO2 and n-type ZnO films by pulsed laser deposition (PLD). The PLD of AgCoO2 thin films was carried out using the pelletized sintered target of AgCoO2 powder, which was synthesized in-house by the hydrothermal process. The band gap of these thin films was found to be ~3.89 eV and they had transmission of~55% in the visible spectral region. Although Hall measurements could only indicate mixed carrier type conduction but thermoelectric power measurements of Seebeck coefficient confirmed the p-type conductivity of the grown AgCoO2 films. The PLD grown ZnO films showed a band gap of ~3.28 eV, an average optical transmission of ~85% and n-type carrier density of~4.6×1019 cm− 3. The junction between p-AgCoO2 and n-ZnO was found to be rectifying. The ratio of forward current to the reverse current was about 7 at 1.5 V. The diode ideality factor was much greater than 2.
Resumo:
The present work is mainly concentrated on setting up a NIR tunable diode laser absorption (TDLA) spectrometer for high-resolution molecular spectroscopic studies. For successfully recording the high-resolution tunable diode laser spectrum, various experimental considerations are to be taken into account like the setup should be free from mechanical vibrations, sample should be kept at a low pressure, laser should be in a single mode operation etc. The present experimental set up considers all these factors. It is to be mentioned here that the setting up of a high resolution NIR TDLA spectrometer is a novel experiment requiring much effort and patience. The analysis of near infrared (NIR) vibrational overtone spectra of some substituted benzene compounds using local mode model forms another part of the present work. An attempt is made to record the pulsed laser induced fluorescence/Raman spectra of some organic compounds. A Q-switched Nd:YAG laser is used as the excitation source. A TRIAX monochromator and CCD detector is used for the spectral recording. The observed fluorescence emission for carbon disulphide is centered at 680 nm; this is assigned as due to the n, p* transition. Aniline also shows a broad fluorescence emission centered at 725 nm, which is due to the p,p* transition. The pulsed laser Raman spectra of some organic compounds are also recorded using the same experimental setup. The calibration of the set up is done using the laser Raman spectra of carbon tetrachloride and carbon disulphide. The observed laser Raman spectra for aniline, o-chloroaniline and m-chlorotoluene show peaks characteristics of the aromatic ring in common and the characteristics peaks due to the substitutuent groups. Some new peaks corresponding to low-lying vibrations of these molecules are also assigned
Resumo:
Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene.
Resumo:
Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene
Resumo:
The length-dependent tuning of the fluorescence spectra of a dye doped polymer fiber is reported. The fiber is pumped sideways and the fluorescence is measured from one of the ends. The excitation of a finite length of dye doped fiber is done by a diode pumped solid state laser at a wavelength of 532 nm. The fluorescence emission is measured at various positions of the fiber starting from a position closer to the pumping region and then progressing toward the other end of the fiber. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped fiber are different. At longer distances of propagation, a decrease in optical loss coefficient is observed. The fluorescence peaks exhibit a redshift of 12 nm from 589 to 610 nm as the point of illumination progresses toward the detector end. This is attributed to the self-absorption and re-emission of the laser dye in the fiber.
Resumo:
Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.