9 resultados para Dimethyl-sulfoxide Reductase
em Cochin University of Science
Resumo:
The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.
Resumo:
A combined experimental and theoretical study of the absorption spectra of a group of closely related pyrylium perchlorates 1-11 are presented. Minor changes in the position of the substituents lead to drastic changes in the absorption spectra in this series of compounds. We have attempted to explain the observed changes using the x,y-band notation developed by Balaban and co-workers. Absorption spectra of all compounds are compared with results from time-dependent density functional theory (TDDFT) and Zerner’s intermediate neglect of differential overlap (ZINDO/S) level calculations. Results of the calculations are in good agreement with experimental observations and an interesting correlation between Balaban’s notations and the MO transitions are obtained for simple derivatives. It is suggested that for more complex systems such as R- and â-naphthyl substituted systems, the empirical method is not appropriate.
Resumo:
The mechanism of devulcanization of sulfur-vulcanized natural rubber with aromatic disulfides and aliphatic amines has been studied using 23-dimethyl-2-butene (C5H1,) as a low-molecular weight model compound. First C6H12 was vulcanized with a mixture of sulfur, zinc stearate and N-cyclohexyl-2-benzothiazylsulfenamide (CBS) as accelerator at 140 °C, resulting in a mixture of addition products (C(,H 1 i-S,-C5H 1 i ). The compounds were isolated and identified by High Performance Liquid Chromatography (HPLC) with respect to their various sulfur ranks. In it second stage, the vulcanized products were devulcanized using the agents mentioned above at 200 °C. The kinetics and chemistry of the breakdown of the sulfur-hridges were monitored. Both devulcanization agents decompose sulfidic vulcanization products with sulfur ranks equal or higher than 3 quite effectively and with comparable speed. Di phenyldisulfide as devulcanization agent gives rise to a high amount of mono- and disulfidic compounds formed during the devulcanization, hexadecylamine, as devulcanization agent, prevents these lower sulfur ranks from being formed.
Resumo:
The catalyst compositions of the Zn1−xCOxFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1.0) spiel series possessing ‘x’ values, x less than or equal to 0.5, are unique for selective N-monomethylation of aniline using methanol as the alkylating agent. Since dimethyl carbonate (DMC) is another potential non-toxic alkylating agent, alkylation of aniline was investigated over various Zn–Co ferrites using DMC as the alkylating agent. The merits and demerits of the two alkylating agents are compared. Catalytic activity followed a similar trend with respect to the composition of the ferrospinel systems. DMC is active at comparatively low temperature, where methanol shows only mild activity. However, on the selectivity basis, DMC as an alkylating agent could not compete with methanol, since the former gave appreciable amounts of N,N-dimethylaniline (NNDMA) even at low temperature where methanol gave nearly 99% N-methylaniline (NMA) selectivity. As in the case of methanol, DMC also did not give any C-alkylated products.
Resumo:
The synthesis of dimethyl acetals of carbonyl compounds such as cyclohexanone, acetophenone, and benzophenone has successfully been carried out by the reaction between ketones and methanol using different solid acid catalysts. The strong influence of the textural properties of the catalysts such as acid amount and adsorption properties (surface area and pore volume) determine the catalytic activity. The molecular size of the reactants and products determine the acetalization ability of a particular ketone. The hydrophobicity of the various rare earth exchanged Mg–Y zeolites, K-10 montmorillonite clay, and cerium exchanged montmorillonite (which shows maximum activity) is more determinant than the number of active sites present on the catalyst. The optimum number of acidic sites as well as dehydrating ability of Ce3+-montmorillonite and K-10 montmorillonite clays and various rare earth exchanged Mg–Y zeolites seem to work well in shifting the equilibrium to the product side.
Resumo:
The title compound, C15H16N4S, exists in the Z conformation with the thionyl S atom lying cis to the azomethine N atom. The shortening of the N—N distance [1.3697 (17) A ° ] is due to extensive delocalization with the pyridine ring. The hydrazine– carbothioamide unit is almost planar, with a maximum deviation of 0.013 (2) A ° for the amide N atom. The stability of this conformation is favoured by the formation of an intramolecular N—H N hydrogen bond. The packing of the molecules involves no classical intermolecular hydrogenbonding interactions; however, a C—H interaction occurs