4 resultados para Difference (Psychology)

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was undertaken with the primary objective of explaining differences in consumption of personal care products using personality variables. Several streams of research reported were reviewed and a conceptual model was developed. Theories on the relationship between self concept and behaviour was reviewed and the need to use individual difference variables to conceptualize and measure the salient dimensions of the self were emphasized. Theories relating to social comparison, eating disorders, role of idealized media images in shaping the self-concept, evidence on cosmetic surgery and persuasibility were reviewed in the study. These came from diverse fields like social psychology, use of cosmetics, women studies, media studies, self-concept literature in psychology and consumer research, and marketing. From the review three basic dimensions, namely self-evaluation, self-awareness and persuasibility were identified and they were posited to be related to consumption. Several personality variables from these conceptual domains were identified and factor analysis confirmed the expected structure fitting the basic theoretical dimensions. Demographic variables like gender and income were also considered.It was found that self-awareness measured by the variable public self-consciousness explain differences in consumption of personal care products. The relationship between public self-consciousness and consumption was found to be most conspicuous in cases of poor self-, evaluation measured by self-esteem. Susceptibility to advertising also was found to explain differences in consumption.From the research, it may be concluded that personality variables are useful for explaining consumption and they must be used together to explain and understand the process. There may not be obvious and conspicuous links between individual measures and behaviour in marketing. However, when used in proper combination and with the help oftheoretical models personality offers considerable explanatory power as illustrated in the seventy five percent accuracy rate of prediction obtained in binary logistic regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this thesis is to formulate a basic commutative difference operator theory for functions defined on a basic sequence, and a bibasic commutative difference operator theory for functions defined on a bibasic sequence of points, which can be applied to the solution of basic and bibasic difference equations. in this thesis a brief survey of the work done in this field in the classical case, as well as a review of the development of q~difference equations, q—analytic function theory, bibasic analytic function theory, bianalytic function theory, discrete pseudoanalytic function theory and finally a summary of results of this thesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biclustering is simultaneous clustering of both rows and columns of a data matrix. A measure called Mean Squared Residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within a submatrix. In this paper a novel algorithm is developed for biclustering gene expression data using the newly introduced concept of MSR difference threshold. In the first step high quality bicluster seeds are generated using K-Means clustering algorithm. Then more genes and conditions (node) are added to the bicluster. Before adding a node the MSR X of the bicluster is calculated. After adding the node again the MSR Y is calculated. The added node is deleted if Y minus X is greater than MSR difference threshold or if Y is greater than MSR threshold which depends on the dataset. The MSR difference threshold is different for gene list and condition list and it depends on the dataset also. Proper values should be identified through experimentation in order to obtain biclusters of high quality. The results obtained on bench mark dataset clearly indicate that this algorithm is better than many of the existing biclustering algorithms