140 resultados para Dielectric wave guides
em Cochin University of Science
Resumo:
The coplanar wave guide is an attractive device in microwave integrated circuits due to its uniplanar nature, ease of fabrication and low production cost. Several attempts are already done to explore the radiating modes in coplanar wave guide transmission lines. Usually coplanar wave guides are excited by an SMA connector with its centre conductor connected to the exact middle of the centre strip and the outer ground conductor to the two ground strips. The mode excited on it is purely a bound mode. The E-field distribution in the two slots are out of phase and there for cancels at the far field. This thesis addresses an attempt to excite an in phase E-field distribution in the two slots of the co planar wave guide by employing a feed asymmetry, in order to get radiation from the two large slot discontinuities of the coplanar waveguide. The omni directional distribution of the radiating energy can be achieved by widening the centre strip.The first part of the thesis deals with the investigations on the resonance phenomena of conventional coplanar waveguides at higher frequency bands. Then an offset fed open circuited coplanar waveguide supporting resonance/radiation phenomena is analyzed. Finally, a novel compact co planar antenna geometry with dual band characteristics, suitable for mobile terminal applications is designed and characterized using the inferences from the above study.
Resumo:
The MgAl2O4 ceramics were prepared by the conventional solid-state ceramic route and the dielectric properties studied in the microwave frequency region (3–13 GHz). The phase purity and crystal structure were identified using the X-ray diffraction technique. The MgAl2O4 spinel ceramics show interesting microwave dielectric properties (εr = 8.75, Qux f = 68 900 GHz (loss tangent = 0.00017 at 12.3 GHz), τf =−75 ppm/◦C). The MgAl2O4 has high negative τf, which precludes its immediate use in practical applications. Hence the microwave dielectric properties of MgAl2O4 spinels were tailored by adding different mole fractions of TiO2. The εr and Q factor of the mixed phases were increased with the molar addition of TiO2 into the spinel to form mixtures based on (1−x)MgAl2O4-xTiO2 (x = 0.0−1.0). For x = 0.25 in (1−x)MgAl2O4-xTiO2, the microwave quality factor reaches a maximum value of Qux f = 105 400 GHz (loss tangent = 0.00007 at 7.5 GHz) where εr and τf are 11.035 and −12 ppm/◦C, respectively. The microwave dielectric properties of the newly developed 0.75MgAl2O4-0.25TiO2 dielectric is superior to several commercially available low loss dielectric substrates.
Resumo:
A fairly rigorous analytical treatment of the power characteristics of dielectric optical waveguides with Piet Hein core-cross sectional geometry is presented in this paper. This kind of wareguide structure would be advantageous owing to the absence of corners, which are found in rectangular guides, resulting in undesirable loss (hit to the scattering of light. In order to simplify this theoretical approach. em approximation of vanishing refractive index difference between the guiding and the non-guiding sections is implemented. The variation eJ logarithmic power is shown for different dimensions of the core, corresponding to different azimuthal modal indices. It is found that the nutlet with higher index values carry less logaritlunic power in the lower tail of the propagation 's constant range, and this feature affects the higher tail. A better kind of uniformity of the power distribution is observed near the higher tail of the range of propagation Constants
Resumo:
The scattering behaviour of fractal based metallodielectric structures loaded over metallic targets of different shapes such as flat plate, cylinder and dihedral corner reflector are investigated for both TE and TM polarizations of the incident wave. Out of the various fractal structures studied,square Sierpinski carpet structure is found to give backscattering reduction for an appreciable range of frequencies. The frequency of minimum backscattering depends on the geometry of the structure as well as on the thickness of the substrate. This structure when loaded over a dihedral corner reflector is showing an enhancement in RCS for corner angles other than 90◦.
Resumo:
The present study on the preparation , characterization and microwave dielectric properties of AnBn-1O3n (N=5,6,8) type perovskite compounds. The explored ceramics show dielectric constant between 11 and 54,quality factor in the range 2400 to 88900 GHz and Tf in the range -73 to +231ppm/0C.Most of the investigated cation deficient hexagonal perovskites show intermediate dielectric constant with high quality factors. This study gives a general introduction about material, scientific and technological aspects of DRs.Three important ,€r ,Q and Tf, used for the DR characterization are described. The relationship of the above parameters with the fundamental material characteristics is discussed. Different modes are excited when a DR is excited with suitable microwave spectrum of frequencies .A description of analytical determination of frequencies and construction of mode charts used for sample design and mode identification are also discussed. In this study several ceramics are developed for DR purposes, very little attention has been paid to grow the single crystals. It might be due to the fact that the difficulties and time involved in the growth of single crystals, big enough to function as microwave resonators make them expensive .However single crystals of these materials may have very high Q values. It is also possible that a better understanding of the dielectric properties in relation to the structure can be arrived using single crystals. Hence one of the future directions of dielectric resonator research should be to grow good quality single crystals of the above materials.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this article, we report the preparation of conducting natural rubber (NR) with polyaniline (Pani). NR was made into a conductive material by the compounding of NR with Pani in powder form. NR latex was made into a conductive material by the in situ polymerization of aniline in the presence of NR latex. Different compositions of Pani- NR semi-interpenetrating networks were prepared, and the dielectric properties of all of the samples were determined in microwave frequencies. The cavity perturbation techpique was used for this study. A HP8510 vector network analyzer with a rectangular cavity resonator was used for this study. S bands 2-4 GHz in frequency were used. Thermal studies were also carried out with thermogravimetric analysis and differential scanning calorimetry.
Resumo:
In this article, we report the preparation of conducting natural rubber (NR) with polyaniline (Pani). NR was made into a conductive material by the compounding of NR with Pani in powder form. NR latex was made into a conductive material by the in situ polymerization of aniline in the presence of NR latex. Different compositions of Pani- NR semi-interpenetrating networks were prepared, and the dielectric properties of all of the samples were determined in microwave frequencies. The cavity perturbation techpique was used for this study. A HP8510 vector network analyzer with a rectangular cavity resonator was used for this study. S bands 2-4 GHz in frequency were used. Thermal studies were also carried out with thermogravimetric analysis and differential scanning calorimetry.
Resumo:
In this paper we report the preparation and dielectric properties of poly o-toluidine:poly vinyl chloride composites in pellet and film forms. The composites were prepared using ammonium persulfate initiator and HCl dopant. The characterization is done by TGA and DSC. The dielectric properties including dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, absorption coefficient, and penetration depth were studied in the microwave field. An HP8510 vector network analyzer with rectangular cavity resonator was used for the study. Sbands (2-4 GHz), C band (5-8 GHz), and X band (8-12 GHz) frequencies were used in the microwave field. Comparisons between the pellet and film forms of composites were also included. The result shows that the dielectric properties in the microwave field are dependent on the frequency and on the method of preparation.
Resumo:
Poly(o-toluidine) (PoT) and poly(o-toluidine co aniline) were prepared by using ammonium persulfate initiator, in the presence of 1M HCI. It was dried under different conditions: room temperature drying (48 h), oven drying (at 50°C for 12 h), or vacuum drying (under vacuum, at room temperature for 16 h). The dielectric properties, such as dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, loss tangent, etc., were studied at microwave frequencies. A cavity perturbation technique was used for the study. The dielectric properties were found to be related to the frequency and drying conditions. Also, the copolymer showed better properties compared to PoT alone.
Resumo:
Polypyrrole/poly (vinyl chloride) semi-interpenenzrtirtg networks of different compositions are prepared using anunonitun per sulfate initiator at room temperature in pellet.form and lilrrt form and their dielectric properties are studied at different microwave frequencies. An HP 8510 Vector network analyzer interfaced with a computer is used. The cavity-perturbation technique is employed for the study