7 resultados para Diarrhea Viruses, Bovine Viral
em Cochin University of Science
Resumo:
The present study was initiated when several massive outbreaks of Chikungunya, Dengue and Japanese Encephalitis were frequently reported across the State of Kerala. Multiple symptoms persisted among the affected individuals and the public health officials were in search of aetiological agents responsible for the out breaks and, other than clinical samples no resources were available. In this context, a study was undertaken to focus on mosquito larvae to investigate the viruses borne by them which remain silently prevalent in the environment. The study was not a group specific investigation limited to either arbovirus or enterovirus, but had a broad spectrum approach. The study encompassed the viral pathogens that could be isolated, their impact when passaged through cell lines, growth kinetics, titer of the working stocks in specific cell line, the structure by means of transmission electron microscopy(TEM), the one step growth and molecular characterization using molecular tools.
Resumo:
This thesis covers various aspects of viral diseases affecting shrimp aquaculture. The research component of this thesis can be divided into four areas. The areas covered are: I) A study to determine the prevalence of WSSV among the crustaceans in the Vembanad estuary, the shrimp aquaculture farms surrounding the estuary, and the sea off Cochin coast, India using two , sets of nested PCR primers. 2) An investigation to compare the sequence of six major structural proteins of WSSV; vp28, vp26, vp 19, vp68, vp281, vp466 from different geographical locations with that of an isolate from India. 3) Simultaneous occurrence of HPV, IHHNV, MBV and WSSV in postlarvae of P. monodon from hatcheries in India was monitored by Polymerase Chain Reaction. 4) A real time PCR procedure was developed for the quantitative analysis of WSSV infection. The viral load of postlarvae from hatcheries in Kerala meant for aquaculture was also determined using the quantitative PCR.
Resumo:
Unveiling the molecular and regulatory mechanisms that prevent in vitro transformation in shrimp remains elusive in the development of continuous cell lines, with an arduous history of over 25 years (Jayesh et al., 2012). Despite presenting challenges to researchers in developing a cell line, the billion dollar aquaculture industry is under viral threat. In addition, the regulatory mechanisms that prevent in vitro transformation and carcinoma in shrimps might provide new leads for the development of anti-ageing and anti-cancer interventions in human (Vogt, 2011) and in higher vertebrates. This highlights the importance of developing shrimp cell lines, to bring out effective prophylactics against shrimp viruses and for understanding the mechanism that induce cancer and ageing in human.. Advances in molecular biology and various gene transfer technologies for immortalization of cells have resulted in the development of hundreds of cell lines from insects and mammals, but yet not a single cell line has been developed from shrimp and other marine invertebrates. With this backdrop, the research described in this thesis attempted to develop molecular tools for induced in vitro transformation in lymphoid cells from Penaeus monodon and for the development of continuous cell lines using conventional and novel technologies to address the problems at cellular and molecular level.
Resumo:
A continuous cell line (SISK) from kidney of sea bass, Lates calcarifer, has been established and characterized. The cell line was maintained in Leibovitz' L-15 supplemented with 15% fetal bovine serum. This cell line has been subcultured more than 100 times over a period of 2 years. The SISK cell line consists of predominantly of epithelial-like cells. These cells showed strong positive for epithelial markers such as cytokeratin 19 and pancytokeratin. The cells were able to grow at temperature between 25 and 32 °C with optimum temperature of 28 °C. The growth rate of sea bass kidney cells increased as the FBS proportion increased from 2% to 20% at 28 °C with optimum growth at the concentrations of 15% or 20% FBS. The distribution of chromosome number was 30 to 56 with a modal peak at 48 chromosomes. Polymerase chain reaction products were obtained from SISK cells and tissues of sea bass with primer sets of microsatellite markers of sea bass. Five fish viruses were tested on this cell line to determine its susceptibility to these viruses and this was found to be susceptible to MABV NC1 and nodavirus, and the infection was confirmed by RT-PCR and CPE. This suggests that the SISK cell line has good potential for the isolation of various fish viruses. This cell line has been shown to be susceptible to bacterial extracellular products. The SISK cell line is the India's first marine fish cell line.
Resumo:
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1 ), tryptose phosphate broth (2.95 g l 1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 lgml 1 chloramphenicol, 100 lgml 1 streptomycin and 100 IU ml 1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-20-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals
Resumo:
White Spot Syndrome Virus (WSSV) is the most devastating disease affecting shrimp culture around the world. Though, considerable progress has been made in the detection and molecular characterization of WSSV in recent years, information pertaining to immune gene expression in shrimps with respect to WSSV infection remains limited. In this context, the present study was undertaken to understand the differential expression of antimicrobial peptide (AMP) genes in the haemocytes of Penaeus monodon in response to WSSV infection on a time-course basis employing semi-quantitative RT-PCR. The present work analyzes the expression profile of six AMP genes (ALF, crustin-1, crustin-2, crustin-3, penaeidin-3 and penaeidin-5), eight WSSV genes (DNA polymerase, endonuclease, immediate early gene, latency related gene, protein kinase, ribonucleotide reductase, thymidine kinase and VP28) and three control genes (18S rRNA, β-actin and ELF) in P. monodon in response to WSSV challenge. Penaeidins were found to be up-regulated during early hours of infection and crustin-3 during late period of infection. However, ALF was found to be up-regulated early to late period of WSSV infection. The present study suggests that AMPs viz. ALF and crustin-3 play an important role in antiviral defense in shrimps. WSSV gene transcripts were detected post-challenge day 1 itself and increased considerably day 5 onwards. Evaluation of the control genes confirmed ELF as the most reliable control gene followed by 18S rRNA and β-actin for gene expression studies in shrimps. This study indicated the role of AMPs in the protection of shrimps against viral infection and their possible control through the up-regulation of AMPs
Resumo:
Development of continuous shrimp cell lines for effective investigation on shrimp viruses remains elusive with an arduous history of over 25 years. Despite presenting challenges to researchers in developing a cell line, the billion dollar aquaculture industry is under viral threat. Advances in molecular biology and various gene transfer technologies for immortalization of cells have resulted in the development of hundreds of cell lines from insects and mammals, but yet not a single cell line has been developed from shrimp and other marine invertebrates. Though improved growth and longevity of shrimp cells in vitro could be achieved by using modified growth media this did not make any leap to spontaneous transformation; probably due to the fact that shrimp cells inhibited neoplastic transformations. Oncogenic induction and immortalization are considered as the possible ways, and an exclusive medium for shrimp cell culture and an appropriate mode of transformation are crucial. In this review status of shrimp cell line development and its future orientation are discussed