4 resultados para Deuterated
em Cochin University of Science
Resumo:
Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested high‐temperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).
Resumo:
The thesis aims to present the results of the experimental investigations on the electrical properties like electrical conductivity, dielectric constant and ionic thermo~ currents in certain ammonium containing ferroelectric crystals viz. LiNH4SO4, (NH4)2SO4 and (NH4)5H(SO4)2. Special attention has been paid in revealing the mechanisms of electrical conduction in the various phases of these crystals and those asso~ ciated with the different phase transitions occurring in them, by making studies on doped, quenched and deuterated crystals. The report on the observation of two new phase transitions in (NH4) S O2 and of a similar one in ( NH4 ) H (2SO4 ) are included. The relaxation mechanisms of the impurity-vacancy complexes and the space charge phenomena in pure and doped crystals of LiNH4SO4 and (NH4)2SO4 and the observation of a new type of ionic thermo-current viz. Protonic Thermo-Current (PTC) in these crystals are also presented here.
Resumo:
In the present thesis a series of exhaustive investigations have been carried out on a number of crystalline samples with special reference tx> the jphase transitions exhibited by them. These include single crystals of pure, doped or deuterated specimens of certain ammonium containing crystals viz., (NH )34H(SO4)2, (NH4)2HPO4, (NH4)2Cr2O7 znui NH4H2PO4. ac/dc electrical conductivity, dielectric constant, ionic thermocurrent as wwifil as photoacoustic measurements have been carried out on most of them over a wide range of temperature. In addition investigations have been carried out in pure and doped single crystals of NaClO3 and NaNO3 using ionic thermocurrent measurements and these are presented here. Special attention has been paid to reveal the mechanism of electrical conduction in various phases of "these crystals and to evaluate the different parameters involved in the conduction as well as phase transition process. The thesis contains ten chapters ‘
Resumo:
Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3·9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance ofBrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance υ1 mode of BrO3− anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3− anion. At high temperatures, structural rearrangement is taking place for bothH2Omolecule and BrO3 ions leading to the loss ofwater molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.