5 resultados para Detection process
em Cochin University of Science
Resumo:
Machine tool chatter is an unfavorable phenomenon during metal cutting, which results in heavy vibration of cutting tool. With increase in depth of cut, the cutting regime changes from chatter-free cutting to one with chatter. In this paper, we propose the use of permutation entropy (PE), a conceptually simple and computationally fast measurement to detect the onset of chatter from the time series using sound signal recorded with a unidirectional microphone. PE can efficiently distinguish the regular and complex nature of any signal and extract information about the dynamics of the process by indicating sudden change in its value. Under situations where the data sets are huge and there is no time for preprocessing and fine-tuning, PE can effectively detect dynamical changes of the system. This makes PE an ideal choice for online detection of chatter, which is not possible with other conventional nonlinear methods. In the present study, the variation of PE under two cutting conditions is analyzed. Abrupt variation in the value of PE with increase in depth of cut indicates the onset of chatter vibrations. The results are verified using frequency spectra of the signals and the nonlinear measure, normalized coarse-grained information rate (NCIR).
Resumo:
The main objective of the work undertaken here was to develop an appropriate microbial technology to protect the larvae of M.rosenbergii in hatchery from vibriosis. This technology precisely is consisted of a rapid detection system of vibrios and effective antagonistic probiotics for the management of vibrios. The present work was undertaken with the realizations that to stabilize the production process of commercial hatcheries an appropriate, comprehensive and fool proof technology is required primarily for the rapid detection of Vibrio and subsequently for its management. Nine species of Vibrio have been found to be associated with larvae of M. rosenbergii in hatchery. Haemolytic assay of the Vibrio and Aeromonas on prawn blood agar showed that all isolates of V. alginolyticus and Aeromonas sp., from moribund, necrotized larve were haemolytic and the isolates of V.cholerae, V.splendidus II, V.proteolyticus and V.fluvialis from the larvae obtained from apparently healthy larval rearing systems were non-haemolytic. Hydrolytic enzymes such as lipase, chitinase and gelatinase were widespread amongst the Vibrio and Aeromonas isolates. Dominance of V.alginolyticus among the isolates from necrotic larvae and the failure in isolating them from rearing water strongly suggest that they infect larvae and multiply in the larval body and cause mortality in the hatchery. The observation suggested that the isolate V. alginolyticus was a pathogen to the larvae of M.rosenbergii. To sum up, through this work, nine species of Vibrio and genus Aeromonas associated with M.rosenbergii larval rearing systems could be isolated and segregated based on the haemolytic activity and the antibodies (PA bs) for use in diagnosis or epidemiological studies could be produced, based on a virulent culture of V.alginolyticus. This could possibly replace the conventional biochemical tests for identification. As prophylaxis to vibriosis, four isolates of Micrococcus spp. and an isolate of Pseudomonas sp. could be obtained which could possibly be used as antagonistic probiotics in the larval rearing system of M.rosenbergii.
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.
Resumo:
Absorption spectra of formaldehyde molecule in the gas phase have been recorded using photoacoustic (PA) technique with pulsed dye laser at various power levels. The spectral profiles at higher power levels are found to be different from that obtained at lower laser powers. Two photon absorption (TPA) is found to be responsible for the photoacoustic signal at higher laser power while the absorption at lower laser power level is attributed to one photon absorption (OPA) process. Probable assignments for the different transitions are given in this paper.
Resumo:
In this paper we discuss our research in developing general and systematic method for anomaly detection. The key ideas are to represent normal program behaviour using system call frequencies and to incorporate probabilistic techniques for classification to detect anomalies and intrusions. Using experiments on the sendmail system call data, we demonstrate that we can construct concise and accurate classifiers to detect anomalies. We provide an overview of the approach that we have implemented