2 resultados para Design Support

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the commercial and financial data are stored in decimal fonn. Recently, support for decimal arithmetic has received increased attention due to the growing importance in financial analysis, banking, tax calculation, currency conversion, insurance, telephone billing and accounting. Performing decimal arithmetic with systems that do not support decimal computations may give a result with representation error, conversion error, and/or rounding error. In this world of precision, such errors are no more tolerable. The errors can be eliminated and better accuracy can be achieved if decimal computations are done using Decimal Floating Point (DFP) units. But the floating-point arithmetic units in today's general-purpose microprocessors are based on the binary number system, and the decimal computations are done using binary arithmetic. Only few common decimal numbers can be exactly represented in Binary Floating Point (BF P). ln many; cases, the law requires that results generated from financial calculations performed on a computer should exactly match with manual calculations. Currently many applications involving fractional decimal data perform decimal computations either in software or with a combination of software and hardware. The performance can be dramatically improved by complete hardware DFP units and this leads to the design of processors that include DF P hardware.VLSI implementations using same modular building blocks can decrease system design and manufacturing cost. A multiplexer realization is a natural choice from the viewpoint of cost and speed.This thesis focuses on the design and synthesis of efficient decimal MAC (Multiply ACeumulate) architecture for high speed decimal processors based on IEEE Standard for Floating-point Arithmetic (IEEE 754-2008). The research goal is to design and synthesize deeimal'MAC architectures to achieve higher performance.Efficient design methods and architectures are developed for a high performance DFP MAC unit as part of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements