7 resultados para Density-of-states analysis

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density of states and the low temperature specific heat of higb-Tc superconductors are calculated in a functional integral formalism using the slave boson technique. The manybody calculation in a saddle point approximation shows that the Iow energy sector is dominated by 3 single band. The calculated values of density of states are in good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of ambient gas on the dynamics of the plasma generated by laser ablation of a carbon target using 1.06 μm radiation from a Q-switched Nd:YAG laser has been investigated using a spectroscopic technique. The emission characteristics of the carbon plasma produced in argon, helium and air atmospheres are found to depend strongly on the nature and pressure of the surrounding gas. It has been observed that hotter and denser plasmas are formed in an argon atmosphere rather than in helium or air as an ambient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the far longed practices of technical analysis by many participants in Indian stock market, none have arrived at the exact position of technical analysis as a tool for foretelling share prices. There is no evidence supporting that one has established its definite role in predicting the behaviour of share price and also to see the extent of validity (how far reliable) of technical tools in Indian stock market. The problem is the vacuum in the arena of securities market analysis where an unrecognised tool is practised, i.e., whether to hold on to technical analysis or to drop it. Again, as already stated in this chapter, its validity need not continue forever. It may become futile as happened in developed markets. Continuous practice of a tool, which is valid only during discontinuous times is also an error. The efficacy of different market phenomena in terms of their ability to foretell the extent and direction of the price movements and reliability thereof remain as not yet proved in. This requires further study in this area so that this controversy may be settled. A solution to the problem requires enquiring and establishing the applicability of technical analysis, if any, there is in the Indian stock market. The study has the following two broad objectives for the purpose of confirming the applicability, if any, of technical analysis in the Indian stock market. The first objective is to ascertain the current validity of ‘traditional holding with respect to patterns’ and the second objective is to ascertain the ‘consistent superiority’, if any, of technical indicators over non-signal strategies in return generation. The study analyses the five patterns, which are widely known and commonly found in publications. They are: (1) Symmetrical Triangles, (2) Rising Wedges, (3) Falling Wedges, (4) Head and Shoulders Top and (5) Head and Shoulders Bottom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis deals with the theoretical investigations on the effect of anisotropy on various properties of magnetically doped superconductors described by fihiba — Rusinov model.Chapter 1 is introductory. It contains a brief account of the current status of theory of superconductivity. In’ chapter 2 we give the formulation of the problem. Chapter 2.1 gives the BCS theory. The effect of magnetic impurities in superconductors as described by A8 theory is given in chapter 2.2A and that described by SR model is discussed in chapter 2.28. Chapter 2.2c deals with Kondo effect. In chapter 2.3 the anisotropy problem is reviewed. Our calculations, results and discussions are given in chapter 3. Chapter 3.1 deals with Josephson tunnel effect. In chapter 3.2 the thermodynamic critical field H62 is described. Chtpter 3.3 deals with the density of states. The ultrasonic attenuation coefficient and ufitlear spin relaxation are given in chapter 3.4 and 3.5 respectively. In chapter 3.6 we give the upper critical field calculations and chapter 3.7 deals with the response function. The Kondo effect is given in chapter 3.8. In chapter 4 we give the sumary of our results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor physics has developed significantly in the field of re- search and industry in the past few decades due to it’s numerous practical applications. One of the relevant fields of current interest in material science is the fundamental aspects and applications of semi- conducting transparent thin films. Transparent conductors show the properties of transparency and conductivity simultaneously. As far as the band structure is concerned, the combination of the these two properties in the same material is contradictory. Generally a trans- parent material is an insulator having completely filled valence and empty conduction bands. Metallic conductivity come out when the Fermi level lies within a band with a large density of states to provide high carrier concentration. Effective transparent conductors must nec- essarily represent a compromise between a better transmission within the visible spectral range and a controlled but useful electrical con- ductivity [1–6]. Generally oxides like In2O3, SnO2, ZnO, CdO etc, show such a combination. These materials without any doping are insulators with optical band gap of about 3 eV. To become a trans- parent conductor, these materials must be degenerately doped to lift the Fermi level up into the conduction band. Degenerate doping pro- vides high mobility of extra carriers and low optical absorption. The increase in conductivity involves an increase in either carrier concen- tration or mobility. Increase in carrier concentration will enhance the absorption in the visible region while increase in mobility has no re- verse effect on optical properties. Therefore the focus of research for new transparent conducting oxide (TCO) materials is on developing materials with higher carrier mobilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional electronic systems play a crucial role in modern electronics and offer a multitude of opportunities to study the fundamental phenomena at low dimensional physics. A quantum well heterostructure based on polyaniline (P) and iodine doped polyaniline (I) thin films were fabricated using radio frequency plasma polymerization on indium tin oxide coated glass plate. Scanning probe microscopy and scanning electron microscopy studies were employed to study the morphology and roughness of the polymer thin films. Local electronic density of states (LDOS) of the P–I–P heterostructures is probed using scanning tunnelling spectroscopy (STS). A step like LDOS is observed in the P–I–P heterostructure and is attributed to the quantum well confinement of electrons in the polymer heterostructure.