2 resultados para Degradation process
em Cochin University of Science
Resumo:
In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries
Resumo:
Deep fat frying process is one of the widely followed cooking practices throughout the world. Cooking oils serve as a medium for frying food for transferring heat and makes fried food tasty and palatable. Frying process is a most complex process involving numerous physicochemical changes which are complicated to understand. Frying leads to thermal degradation of oil through thermo-oxidation, hydrolysis, and polymerization. Hydrolysis results in formation of free fatty acids whereas oxidation process produces hydroperoxides and small molecular carbonyl compounds. This whole process leads to the formation of polar compounds and degradation of antioxidants that further degrades frying oil. Eventually, through mass transfer process these degradation products accumulate into fried food and reduce the nutritional quality of both oil and food. Thus, the frying process is of research interest calls for detailed systematic study which is chosen for the present study. The primary objective of this study is to understand the mechanism of degradation and characterization ofdegraded products which helps in arriving at the limits for frying oil utilization in terms of number of frying cycles. The mechanistic studies and the knowledge on the degraded products help to understand the way to retard the deterioration of oil for stability and enhancement of frying cycles. The study also explores the formation of the predominant polar compounds and their structural elucidation through mass spectrometry. Oxidation of oil is another important factor that ignites the degradation phenomena. One of the best ways to increase thermal stability of any oil is addition of potent antioxidants. But, most of the natural and synthetic antioxidants are unstable and ineffective at frying temperatures. Therefore, it is necessary to screen alternative antioxidants for their activity in the refined oils which are devoid of any added antioxidants. In this context, this study discussed the efficacy of several natural and synthetic antioxidants to retard the formation of polar compounds and thermooxidation during prolonged frying conditions. Similarly, the advantage of blending of two different oils to improve the thermal stability was explored. The present study brings out the total picture on the type of degradation products formed during frying and the ways of retarding the determination to improve upon the stability of the oil and enhancement of frying cycles.