3 resultados para Defense mechanism
em Cochin University of Science
Resumo:
The present investigation revealed three types of circulating haemocytes in the haemolymph of F. indicus: hyalinocytes, small-granule haemocytes, and large-granule haemocytes. Intermediate stages indicate the maturing process of a single cell. The presence of enzymes such as peroxidase, phenoloxidase and acid phosphatase in the haemocytes, and the substantial production of oxygen radicals during phagocytosis show that the haemocytes are capable of mounting a fme cellular defense mechanism. The enzyme activities of the serum and the presence of agglutinins in the serum, which may act as opsonins, agglutinate foreign particles and augment phagocytosis, confirm the presence of a superior humoral immune system in F. indicus.Bacterial infection caused considerable variations in the cellular and humoral factors, such as the number of circulating cells and haemagglutinating activity, especially in the initial hours of infection. The total haemocyte count, haemagglutination titer and phenoloxidase enzyme showed significant reductions on bacterial presence and could be used as indicators of bacterial infection.The number of circulating cells showed drastic fluctuation on exposure to pollutants. Nuvan at low concentrations was able to produce changes in the haemolymph factors and in the tissue organization, which implies that the animal is under stress and is easily prone to infections. Exposure to nuvan resulted in significant variation in all of the cellular and humoral factors, especially, the total haemocyte count, percentage of small granule haemocytes, phagocytic activity and the haemagglutinating activity, which might be good indicators of pesticide pollution. Heavy metal exposure caused significant increase in total haemocyte count and reduction in phenoloxidase enzyme activity Even changes in the physio-chemical parameters, such as salinity caused fluctuations in the defense factors, indicating stress in this euryhaline species. The dietary incorporation of a commercial immunostimulant containing P-l,3 glucan resulted in stimulation of some of the humoral defense factors of F indicus, but was time dependent. The modulations, on exposure to various external factors, in the cellular and humoral factors, especially, total haemocyte count, phagocytic activity, haemagglutinating activity and the phenoloxidase and acid phosphatase enzymes suggest that these parameters could be used as indicators of the health status of F indicus, which assist in better monitoring and effective health management of this important cultured species.
Resumo:
The present study dealt with the haematological, biochemical and istopathological impacts of different sub lethal concentrations of ethanol on a euryhaline teleost Oreochromis In05.s‘ambicu.5' (Peters).Studies carried out using GC indicated an increase in blood ethanol oncentration of the fish which mainly arose due to fishes entering into a state of hypoxia which explains ethanol production as an ubiquitous “anaerobic” end product, which gets accumulated whenever metabolic demand exceeds the mitochondrial oxidative potential. The very low amount of ethanol detected in the control group ofO mossambicns was mainly due to the activity of microorganisms in the gut ofO. Nzossambicus.Oedcma observed in the present study, is a defense mechanism that reduces the branchial superficial area of the fish which comes in contact with the external milieu. These mechanisms also increase the diffusion barrier to the pollutant. Dilation of the blood vessels is due to increased permeability helping in the free passage of ethanol into the blood stream. Telangiectasis observed explains the state of asphyxia of the fish when subjected to ethanol toxicity indicating acute respiratory distress. Gill aneurysm observed indicates impaired respiratory function. This is related to the rupture of the pillar cells which results in an increased blood flow inside the lamellae, causing dilation of the blood vessel or even aneurysm of gill.The present findings warrant future studies to explore A'T'Pases as possible biomarkers of pollutant exposure in ecotoxicology. This study indicated that O. mossambicus when exposed for 7 and 21 days to ethanol was under tremendous stress and parameters employed in this study can be adapted for future investigations as biomarkers of damage caused by ethanol to aquatic organisms. The present study revealed that O. mossambicus is sensitive to sub lethal concentrations of ethanol.
Resumo:
Anti-lipopolysaccharide factors (ALFs), a type of cationic antimicrobial peptides (AMPs), and their derivatives are becoming predominant candidates for potential drugs in viral and bacterial diseases. This study reports the first ALF from the mud crab Scylla tranquebarica (StALF, JQ899453) and the second ALF isoform from the blue swimmer crab Portunus pelagicus (PpALF2, JQ899452). Both sequences encoded for precursor molecules, starting with a signal peptide containing 26 amino acid residues, followed by a highly cationic mature peptide, containing two conserved cysteine residues flanking a putative lipopolysaccharide (LPS)-binding domain. BLAST analysis revealed that both PpALF2 and StALF exhibited significant similarity with crustacean ALF sequences. The predicted molecular mass of the mature ALFs was 11.2 kDa with an estimated pI of 10.0. PpALF2 and StALF also showed the typical pattern of alternating hydrophobic and hydrophilic residues in their putative disulphide loop, suggesting that they comprise the same functional domain. Phylogenetic analysis showed that PpALF2 and StALF have similar evolutionary status and they were phylogenetically ancient immune effector molecules which may play an essential role in the host defense mechanism. The spatial structures of PpALF2 and StALF possessed four beta-strands and two alpha-helices. The results indicated that there were more than one ALF involved in crab immunity against various pathogens. ALFs would provide candidate promising therapeutic or prophylactic agents in health management and diseases control in crustacean aquaculture